IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v25y2021i2p206-231.html
   My bibliography  Save this article

A New Class of Severity Regression Models with an Application to IBNR Prediction

Author

Listed:
  • Tsz Chai Fung
  • Andrei L. Badescu
  • X. Sheldon Lin

Abstract

Insurance loss severity data often exhibit heavy-tailed behavior, complex distributional characteristics such as multimodality, and peculiar links between policyholders’ risk profiles and claim amounts. To capture these features, we propose a transformed Gamma logit-weighted mixture of experts (TG-LRMoE) model for severity regression. The model possesses several desirable properties. The TG-LRMoE satisfies the denseness property that warrants its full versatility in capturing any distribution and regression structures. It may effectively extrapolate a wide range of tail behavior. The model is also identifiable, which further ensures its suitability for statistical inference. To make the TG-LRMoE computationally tractable, an expectation conditional maximization (ECM) algorithm with parameter penalization is developed for efficient and robust parameter estimation. The proposed model is applied to fit the severity and reporting delay components of a European automobile insurance dataset. In addition to obtaining excellent goodness of fit, the proposed model is shown to be useful and crucial for adequate prediction of incurred but not reported (IBNR) reserves through out-of-sample testing.

Suggested Citation

  • Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2021. "A New Class of Severity Regression Models with an Application to IBNR Prediction," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 206-231, April.
  • Handle: RePEc:taf:uaajxx:v:25:y:2021:i:2:p:206-231
    DOI: 10.1080/10920277.2020.1729813
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2020.1729813
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2020.1729813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Calcetero-Vanegas & Andrei L. Badescu & X. Sheldon Lin, 2023. "Claim Reserving via Inverse Probability Weighting: A Micro-Level Chain-Ladder Method," Papers 2307.10808, arXiv.org, revised Jun 2024.
    2. Tobias Fissler & Michael Merz & Mario V. Wuthrich, 2021. "Deep Quantile and Deep Composite Model Regression," Papers 2112.03075, arXiv.org.
    3. Marian Reiff & Erik Šoltés & Silvia Komara & Tatiana Šoltésová & Silvia Zelinová, 2022. "Segmentation and estimation of claim severity in motor third-party liability insurance through contrast analysis," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 803-842, September.
    4. Fissler, Tobias & Merz, Michael & Wüthrich, Mario V., 2023. "Deep quantile and deep composite triplet regression," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 94-112.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:25:y:2021:i:2:p:206-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.