IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.09767.html
   My bibliography  Save this paper

Sig-Splines: universal approximation and convex calibration of time series generative models

Author

Listed:
  • Magnus Wiese
  • Phillip Murray
  • Ralf Korn

Abstract

We propose a novel generative model for multivariate discrete-time time series data. Drawing inspiration from the construction of neural spline flows, our algorithm incorporates linear transformations and the signature transform as a seamless substitution for traditional neural networks. This approach enables us to achieve not only the universality property inherent in neural networks but also introduces convexity in the model's parameters.

Suggested Citation

  • Magnus Wiese & Phillip Murray & Ralf Korn, 2023. "Sig-Splines: universal approximation and convex calibration of time series generative models," Papers 2307.09767, arXiv.org.
  • Handle: RePEc:arx:papers:2307.09767
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.09767
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    2. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    3. Hans Buehler & Phillip Murray & Mikko S. Pakkanen & Ben Wood, 2021. "Deep Hedging: Learning to Remove the Drift under Trading Frictions with Minimal Equivalent Near-Martingale Measures," Papers 2111.07844, arXiv.org, revised Jan 2022.
    4. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Owen Futter & Blanka Horvath & Magnus Wiese, 2023. "Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework with Exogenous Signals," Papers 2308.15135, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
    2. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    3. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    4. Alexandre Miot, 2020. "Adversarial trading," Papers 2101.03128, arXiv.org.
    5. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.
    6. Chung I Lu & Julian Sester, 2024. "Generative model for financial time series trained with MMD using a signature kernel," Papers 2407.19848, arXiv.org, revised Jul 2024.
    7. Mohamed Hamdouche & Pierre Henry-Labordere & Huy^en Pham, 2023. "Generative modeling for time series via Schr{\"o}dinger bridge," Papers 2304.05093, arXiv.org.
    8. Mohamed Hamdouche & Pierre Henry-Labordere & Huyên Pham, 2023. "Generative modeling for time series via Schrödinger bridge," Working Papers hal-04063041, HAL.
    9. Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
    10. Rama Cont & Mihai Cucuringu & Renyuan Xu & Chao Zhang, 2022. "Tail-GAN: Learning to Simulate Tail Risk Scenarios," Papers 2203.01664, arXiv.org, revised Mar 2023.
    11. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    12. Chung I Lu, 2023. "Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation," Papers 2307.07694, arXiv.org, revised Jul 2023.
    13. El Amine Cherrat & Snehal Raj & Iordanis Kerenidis & Abhishek Shekhar & Ben Wood & Jon Dee & Shouvanik Chakrabarti & Richard Chen & Dylan Herman & Shaohan Hu & Pierre Minssen & Ruslan Shaydulin & Yue , 2023. "Quantum Deep Hedging," Papers 2303.16585, arXiv.org, revised Nov 2023.
    14. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    15. Solveig Flaig & Gero Junike, 2022. "Scenario Generation for Market Risk Models Using Generative Neural Networks," Risks, MDPI, vol. 10(11), pages 1-28, October.
    16. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    17. Myladis R. Cogollo & Gilberto González-Parra & Abraham J. Arenas, 2021. "Modeling and Forecasting Cases of RSV Using Artificial Neural Networks," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    18. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    19. Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
    20. Edmond Lezmi & Jules Roche & Thierry Roncalli & Jiali Xu, 2020. "Improving the Robustness of Trading Strategy Backtesting with Boltzmann Machines and Generative Adversarial Networks," Papers 2007.04838, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.09767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.