IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.07844.html
   My bibliography  Save this paper

Deep Hedging: Learning to Remove the Drift under Trading Frictions with Minimal Equivalent Near-Martingale Measures

Author

Listed:
  • Hans Buehler
  • Phillip Murray
  • Mikko S. Pakkanen
  • Ben Wood

Abstract

We present a machine learning approach for finding minimal equivalent martingale measures for markets simulators of tradable instruments, e.g. for a spot price and options written on the same underlying. We extend our results to markets with frictions, in which case we find "near-martingale measures" under which the prices of hedging instruments are martingales within their bid/ask spread. By removing the drift, we are then able to learn using Deep Hedging a "clean" hedge for an exotic payoff which is not polluted by the trading strategy trying to make money from statistical arbitrage opportunities. We correspondingly highlight the robustness of this hedge vs estimation error of the original market simulator. We discuss applications to two market simulators.

Suggested Citation

  • Hans Buehler & Phillip Murray & Mikko S. Pakkanen & Ben Wood, 2021. "Deep Hedging: Learning to Remove the Drift under Trading Frictions with Minimal Equivalent Near-Martingale Measures," Papers 2111.07844, arXiv.org, revised Jan 2022.
  • Handle: RePEc:arx:papers:2111.07844
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.07844
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
    2. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    3. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    2. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    3. El Amine Cherrat & Snehal Raj & Iordanis Kerenidis & Abhishek Shekhar & Ben Wood & Jon Dee & Shouvanik Chakrabarti & Richard Chen & Dylan Herman & Shaohan Hu & Pierre Minssen & Ruslan Shaydulin & Yue , 2023. "Quantum Deep Hedging," Papers 2303.16585, arXiv.org, revised Nov 2023.
    4. Magnus Wiese & Phillip Murray & Ralf Korn, 2023. "Sig-Splines: universal approximation and convex calibration of time series generative models," Papers 2307.09767, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Buehler & Phillip Murray & Mikko S. Pakkanen & Ben Wood, 2021. "Deep Hedging: Learning Risk-Neutral Implied Volatility Dynamics," Papers 2103.11948, arXiv.org, revised Jul 2021.
    2. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    3. Yichen Feng & Ming Min & Jean-Pierre Fouque, 2022. "Deep Learning for Systemic Risk Measures," Papers 2207.00739, arXiv.org.
    4. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Karl Friedrich Mina & Gerald H. L. Cheang & Carl Chiarella, 2015. "Approximate Hedging Of Options Under Jump-Diffusion Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-26.
    7. Ivan Peñaloza & Pablo Padilla, 2022. "A Pricing Method in a Constrained Market with Differential Informational Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1055-1100, October.
    8. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    9. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    10. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    11. Solveig Flaig & Gero Junike, 2022. "Scenario Generation for Market Risk Models Using Generative Neural Networks," Risks, MDPI, vol. 10(11), pages 1-28, October.
    12. Regis Houssou & Olivier Besson, 2010. "Indifference of Defaultable Bonds with Stochastic Intensity models," Papers 1003.4118, arXiv.org.
    13. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    14. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    15. Thorsten Rheinländer & Gallus Steiger, 2010. "Utility Indifference Hedging with Exponential Additive Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(2), pages 151-169, June.
    16. Johnny Siu‐Hang Li & Andrew Cheuk‐Yin Ng, 2011. "Canonical Valuation of Mortality‐Linked Securities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 853-884, December.
    17. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    18. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    19. Esche, Felix & Schweizer, Martin, 2005. "Minimal entropy preserves the Lévy property: how and why," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 299-327, February.
    20. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.07844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.