IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.19848.html
   My bibliography  Save this paper

Generative model for financial time series trained with MMD using a signature kernel

Author

Listed:
  • Chung I Lu
  • Julian Sester

Abstract

Generating synthetic financial time series data that accurately reflects real-world market dynamics holds tremendous potential for various applications, including portfolio optimization, risk management, and large scale machine learning. We present an approach for training generative models for financial time series using the maximum mean discrepancy (MMD) with a signature kernel. Our method leverages the expressive power of the signature transform to capture the complex dependencies and temporal structures inherent in financial data. We employ a moving average model to model the variance of the noise input, enhancing the model's ability to reproduce stylized facts such as volatility clustering. Through empirical experiments on S&P 500 index data, we demonstrate that our model effectively captures key characteristics of financial time series and outperforms a comparable GAN-based approach. In addition, we explore the application of the synthetic data generated to train a reinforcement learning agent for portfolio management, achieving promising results. Finally, we propose a method to add robustness to the generative model by tweaking the noise input so that the generated sequences can be adjusted to different market environments with minimal data.

Suggested Citation

  • Chung I Lu & Julian Sester, 2024. "Generative model for financial time series trained with MMD using a signature kernel," Papers 2407.19848, arXiv.org, revised Dec 2024.
  • Handle: RePEc:arx:papers:2407.19848
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.19848
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William C. Freund & Maurice Larrain & Michael S. Pagano, 1997. "Market efficiency before and after the introduction of electronic trading at the Toronto stock exchange," Review of Financial Economics, John Wiley & Sons, vol. 6(1), pages 29-56.
    2. Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2021. "Generative adversarial networks for financial trading strategies fine-tuning and combination," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 797-813, May.
    3. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    4. Chung I Lu, 2023. "Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation," Papers 2307.07694, arXiv.org, revised Jul 2023.
    5. Terry Lyons, 2014. "Rough paths, Signatures and the modelling of functions on streams," Papers 1405.4537, arXiv.org.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    7. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    8. Fermanian, Adeline, 2021. "Embedding and learning with signatures," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    9. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
    2. Yannick Limmer & Blanka Horvath, 2023. "Robust Hedging GANs," Papers 2307.02310, arXiv.org.
    3. Eduardo Abi Jaber & Louis-Amand G'erard, 2024. "Signature volatility models: pricing and hedging with Fourier," Papers 2402.01820, arXiv.org.
    4. Alexandre Miot, 2020. "Adversarial trading," Papers 2101.03128, arXiv.org.
    5. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    6. Edmond Lezmi & Jules Roche & Thierry Roncalli & Jiali Xu, 2020. "Improving the Robustness of Trading Strategy Backtesting with Boltzmann Machines and Generative Adversarial Networks," Papers 2007.04838, arXiv.org.
    7. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    8. Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
    9. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.
    10. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2019. "Quant GANs: Deep Generation of Financial Time Series," Papers 1907.06673, arXiv.org, revised Dec 2019.
    11. Rama Cont & Mihai Cucuringu & Renyuan Xu & Chao Zhang, 2022. "Tail-GAN: Learning to Simulate Tail Risk Scenarios," Papers 2203.01664, arXiv.org, revised Mar 2023.
    12. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
    13. Chung I Lu, 2023. "Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation," Papers 2307.07694, arXiv.org, revised Jul 2023.
    14. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    15. Xiaoyu Tan & Zili Zhang & Xuejun Zhao & Shuyi Wang, 2022. "DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    16. Howard Caulfield & James P. Gleeson, 2024. "Systematic comparison of deep generative models applied to multivariate financial time series," Papers 2412.06417, arXiv.org.
    17. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    18. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    19. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    20. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.19848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.