Adversarial trading
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2021.
"Generative adversarial networks for financial trading strategies fine-tuning and combination,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 797-813, May.
- Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2019. "Generative Adversarial Networks for Financial Trading Strategies Fine-Tuning and Combination," Papers 1901.01751, arXiv.org, revised Mar 2019.
- Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
- Yaser Faghan & Nancirose Piazza & Vahid Behzadan & Ali Fathi, 2020. "Adversarial Attacks on Deep Algorithmic Trading Policies," Papers 2010.11388, arXiv.org.
- Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
- Chung I Lu & Julian Sester, 2024. "Generative model for financial time series trained with MMD using a signature kernel," Papers 2407.19848, arXiv.org, revised Dec 2024.
- Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
- Chung I Lu, 2023. "Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation," Papers 2307.07694, arXiv.org, revised Jul 2023.
- Edmond Lezmi & Jules Roche & Thierry Roncalli & Jiali Xu, 2020. "Improving the Robustness of Trading Strategy Backtesting with Boltzmann Machines and Generative Adversarial Networks," Papers 2007.04838, arXiv.org.
- Mohamed Hamdouche & Pierre Henry-Labordere & Huy^en Pham, 2023. "Generative modeling for time series via Schr{\"o}dinger bridge," Papers 2304.05093, arXiv.org.
- Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
- Sohyeon Kwon & Yongjae Lee, 2024. "Can GANs Learn the Stylized Facts of Financial Time Series?," Papers 2410.09850, arXiv.org.
- Mohamed Hamdouche & Pierre Henry-Labordere & Huyên Pham, 2023. "Generative modeling for time series via Schrödinger bridge," Working Papers hal-04063041, HAL.
- Song Wei & Andrea Coletta & Svitlana Vyetrenko & Tucker Balch, 2023. "INTAGS: Interactive Agent-Guided Simulation," Papers 2309.01784, arXiv.org, revised Nov 2023.
- Rama Cont & Mihai Cucuringu & Renyuan Xu & Chao Zhang, 2022. "Tail-GAN: Learning to Simulate Tail Risk Scenarios," Papers 2203.01664, arXiv.org, revised Mar 2023.
- Magnus Wiese & Phillip Murray & Ralf Korn, 2023. "Sig-Splines: universal approximation and convex calibration of time series generative models," Papers 2307.09767, arXiv.org.
- Amine Assouel & Antoine Jacquier & Alexei Kondratyev, 2021. "A Quantum Generative Adversarial Network for distributions," Papers 2110.02742, arXiv.org.
- Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
- Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
- Xiaoyu Tan & Zili Zhang & Xuejun Zhao & Shuyi Wang, 2022. "DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
- Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
- Gautier Marti & Victor Goubet & Frank Nielsen, 2021. "cCorrGAN: Conditional Correlation GAN for Learning Empirical Conditional Distributions in the Elliptope," Papers 2107.10606, arXiv.org.
- Szymon Kubiak & Tillman Weyde & Oleksandr Galkin & Dan Philps & Ram Gopal, 2023. "Improved Data Generation for Enhanced Asset Allocation: A Synthetic Dataset Approach for the Fixed Income Universe," Papers 2311.16004, arXiv.org.
- Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-02-08 (Big Data)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.03128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.