Complexity measure, kernel density estimation, bandwidth selection, and the efficient market hypothesis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- repec:cii:cepiie:2014-q4-140-60 is not listed on IDEAS
- Walid Mensi & Makram Beljid & Shunsuke Managi, 2014. "Structural breaks and the time-varying levels of weak-form efficiency in crude oil markets: Evidence from the Hurst exponent and Shannon entropy methods," International Economics, CEPII research center, issue 140, pages 89-106.
- Harvey, Andrew & Oryshchenko, Vitaliy, 2012. "Kernel density estimation for time series data," International Journal of Forecasting, Elsevier, vol. 28(1), pages 3-14.
- Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
- Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- D. Challet & A. Chessa & M. Marsili & Y-C. Zhang, 2001.
"From Minority Games to real markets,"
Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 168-176.
- D. Challet & A. Chessa & M. Marsili & Y. -C. Zhang, 2000. "From Minority Games to real markets," Papers cond-mat/0011042, arXiv.org.
- Risso, Wiston Adrián, 2008. "The informational efficiency and the financial crashes," Research in International Business and Finance, Elsevier, vol. 22(3), pages 396-408, September.
- Jean-Philippe Bouchaud, 2009. "The (unfortunate) complexity of the economy," Papers 0904.0805, arXiv.org.
- Lahmiri, Salim & Bekiros, Stelios & Avdoulas, Christos, 2018. "Time-dependent complexity measurement of causality in international equity markets: A spatial approach," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 215-219.
- Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Geoffrey Ducournau, 2021. "Symbol Dynamics, Information theory and Complexity of Economic time series," Papers 2105.04131, arXiv.org.
- Xavier Brouty & Matthieu Garcin, 2023. "A statistical test of market efficiency based on information theory," Quantitative Finance, Taylor & Francis Journals, vol. 23(6), pages 1003-1018, June.
- Park, Sangun & Rao, Murali & Shin, Dong Wan, 2012. "On cumulative residual Kullback–Leibler information," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2025-2032.
- Xavier Brouty & Matthieu Garcin, 2023. "Fractal properties, information theory, and market efficiency," Papers 2306.13371, arXiv.org.
- Matthieu Garcin, 2022. "Forecasting with fractional Brownian motion: a financial perspective," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1495-1512, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniele Angelini & Matthieu Garcin, 2024. "Market information of the fractional stochastic regularity model," Papers 2409.07159, arXiv.org.
- Antonio Squicciarini & Elio Valero Toranzo & Alejandro Zarzo, 2024. "A Time-Series Feature-Extraction Methodology Based on Multiscale Overlapping Windows, Adaptive KDE, and Continuous Entropic and Information Functionals," Mathematics, MDPI, vol. 12(15), pages 1-21, July.
- Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matthieu Garcin, 2023. "Complexity measure, kernel density estimation, bandwidth selection, and the efficient market hypothesis," Working Papers hal-04102815, HAL.
- Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Xavier Brouty & Matthieu Garcin, 2022. "A statistical test of market efficiency based on information theory," Papers 2208.11976, arXiv.org.
- Xavier Brouty & Matthieu Garcin, 2022. "A statistical test of market efficiency based on information theory," Working Papers hal-03760478, HAL.
- Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Ayoub Ammy-Driss & Matthieu Garcin, 2021. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Working Papers hal-02903655, HAL.
- Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
- Andrey Shternshis & Piero Mazzarisi, 2024. "Variance of entropy for testing time-varying regimes with an application to meme stocks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 215-258, June.
- Wang, Xiaoyang, 2022. "Efficient markets are more connected: An entropy-based analysis of the energy, industrial metal and financial markets," Energy Economics, Elsevier, vol. 111(C).
- Daniele Angelini & Matthieu Garcin, 2024. "Market information of the fractional stochastic regularity model," Papers 2409.07159, arXiv.org.
- Matthieu Garcin & Jules Klein & Sana Laaribi, 2020. "Estimation of time-varying kernel densities and chronology of the impact of COVID-19 on financial markets," Papers 2007.09043, arXiv.org, revised Mar 2022.
- Yang, Mo & Wang, Ruotong & Zeng, Zixun & Li, Peizhi, 2024. "Improved prediction of global gold prices: An innovative Hurst-reconfiguration-based machine learning approach," Resources Policy, Elsevier, vol. 88(C).
- Mensi, Walid & Tiwari, Aviral Kumar & Yoon, Seong-Min, 2017. "Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 135-146.
- Matthieu Garcin & Jules Klein & Sana Laaribi, 2022. "Estimation of time-varying kernel densities and chronology of the impact of COVID-19 on financial markets," Working Papers hal-02901988, HAL.
- Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006.
"Random walks, liquidity molasses and critical response in financial markets,"
Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
- J. -P. Bouchaud & J. Kockelkoren & M. Potters, 2004. "Random walks, liquidity molasses and critical response in financial markets," Papers cond-mat/0406224, arXiv.org, revised Jun 2004.
- Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2004. "Random walks, liquidity molasses and critical response in financial markets," Science & Finance (CFM) working paper archive 500063, Science & Finance, Capital Fund Management.
- Matthieu Garcin, 2019. "Estimation of Hurst exponents in a stationary framework [Estimation d'exposants de Hurst dans un cadre stationnaire]," Post-Print hal-02163662, HAL.
- Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
- Andrey Shternshis & Piero Mazzarisi & Stefano Marmi, 2022. "Efficiency of the Moscow Stock Exchange before 2022," Papers 2207.10476, arXiv.org, revised Jul 2022.
- Miguel Henry & George Judge, 2019. "Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series," Econometrics, MDPI, vol. 7(1), pages 1-16, March.
- Aharon, David Y. & Azman Aziz, Mukhriz Izraf & Kallir, Ido, 2023. "Oil price shocks and inflation: A cross-national examination in the ASEAN5+3 countries," Resources Policy, Elsevier, vol. 82(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-07-10 (Econometrics)
- NEP-MFD-2023-07-10 (Microfinance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.13123. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.