IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.04131.html
   My bibliography  Save this paper

Symbol Dynamics, Information theory and Complexity of Economic time series

Author

Listed:
  • Geoffrey Ducournau

Abstract

We propose to examine the predictability and the complexity characteristics of the Standard&Poor500 dynamics behaviors in a coarse-grained way using the symbolic dynamics method and under the prism of the Information theory through the concept of entropy and uncertainty. We believe that experimental measurement of entropy as a way of examining the complexity of a system is more relevant than more common tests of universality in the transition to chaos because it does not make any prior prejudices on the underlying causes associated with the system dynamics, whether deterministic or stochastic. We regard the studied economic time series as being complex and propose to express it in terms of the amount of information this last is producing on different time scales and according to various scaling parameters.

Suggested Citation

  • Geoffrey Ducournau, 2021. "Symbol Dynamics, Information theory and Complexity of Economic time series," Papers 2105.04131, arXiv.org.
  • Handle: RePEc:arx:papers:2105.04131
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.04131
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liudas Giraitis & Peter M. Robinson & Alexander Samarov, 1997. "Rate Optimal Semiparametric Estimation Of The Memory Parameter Of The Gaussian Time Series With Long‐Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(1), pages 49-60, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Garcin, 2023. "Complexity measure, kernel density estimation, bandwidth selection, and the efficient market hypothesis," Papers 2305.13123, arXiv.org.
    2. Matthieu Garcin, 2023. "Complexity measure, kernel density estimation, bandwidth selection, and the efficient market hypothesis," Working Papers hal-04102815, HAL.
    3. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    3. Feng, Yuanhua & Beran, Jan, 2008. "Filtered Log-periodogram Regression of long memory processes," CoFE Discussion Papers 08/10, University of Konstanz, Center of Finance and Econometrics (CoFE).
    4. Claudio Michelacci, 1999. "Cross-Sectional Heterogeneity and the Persistence of Aggregate Fluctuations," Working Papers wp1999_9906, CEMFI.
    5. J. Hidalgo & Y. Yajima, 2003. "Semiparametric estimation of the long-range parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 705-736, December.
    6. repec:cte:wsrepe:4554 is not listed on IDEAS
    7. D.S. Poskitt & Gael M. Martin & Simone D. Grose, 2012. "Bias Reduction of Long Memory Parameter Estimators via the Pre-filtered Sieve Bootstrap," Monash Econometrics and Business Statistics Working Papers 8/12, Monash University, Department of Econometrics and Business Statistics.
    8. Faÿ, Gilles, 2010. "Moment bounds for non-linear functionals of the periodogram," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 983-1009, June.
    9. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
    10. Bardet, Jean-Marc & Dola, Béchir, 2012. "An adaptive estimator of the memory parameter and the goodness-of-fit test using a multidimensional increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 222-240.
    11. García-Enríquez, Javier & Hualde, Javier, 2019. "Local Whittle estimation of long memory: Standard versus bias-reducing techniques," Econometrics and Statistics, Elsevier, vol. 12(C), pages 66-77.
    12. Javier Hidalgo & Philippe Soulier, 2004. "Estimation of the location and exponent of the spectral singularity of a long memory process," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 55-81, January.
    13. Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
    14. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    15. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    16. Liudas Giraitis & Peter M Robinson & Alexander Samarov, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter - (Now published with revised title, Adaptive Rate-Optimal Estimation of the Memory Parameter, in Journal of Multivariate Analysis, 72 (2000)," STICERD - Econometrics Paper Series 379, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    18. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    19. Michelacci, Claudio, 2004. "Cross-sectional heterogeneity and the persistence of aggregate fluctuations," Journal of Monetary Economics, Elsevier, vol. 51(7), pages 1321-1352, October.
    20. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.04131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.