IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.07159.html
   My bibliography  Save this paper

Market information of the fractional stochastic regularity model

Author

Listed:
  • Daniele Angelini
  • Matthieu Garcin

Abstract

The Fractional Stochastic Regularity Model (FSRM) is an extension of Black-Scholes model describing the multifractal nature of prices. It is based on a multifractional process with a random Hurst exponent $H_t$, driven by a fractional Ornstein-Uhlenbeck (fOU) process. When the regularity parameter $H_t$ is equal to $1/2$, the efficient market hypothesis holds, but when $H_t\neq 1/2$ past price returns contain some information on a future trend or mean-reversion of the log-price process. In this paper, we investigate some properties of the fOU process and, thanks to information theory and Shannon's entropy, we determine theoretically the serial information of the regularity process $H_t$ of the FSRM, giving some insight into one's ability to forecast future price increments and to build statistical arbitrages with this model.

Suggested Citation

  • Daniele Angelini & Matthieu Garcin, 2024. "Market information of the fractional stochastic regularity model," Papers 2409.07159, arXiv.org.
  • Handle: RePEc:arx:papers:2409.07159
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.07159
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    2. Paolo Guasoni, 2006. "No Arbitrage Under Transaction Costs, With Fractional Brownian Motion And Beyond," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 569-582, July.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Antoine Ayache, 2013. "Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity," Journal of Theoretical Probability, Springer, vol. 26(1), pages 72-93, March.
    7. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Swiss Finance Institute Research Paper Series 21-88, Swiss Finance Institute.
    8. Matthieu Garcin & Martino Grasselli, 2022. "Long versus short time scales: the rough dilemma and beyond," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 257-278, June.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    12. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    13. Masaaki Fukasawa, 2021. "Volatility has to be rough," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 1-8, January.
    14. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    15. Matthieu Garcin, 2023. "Complexity measure, kernel density estimation, bandwidth selection, and the efficient market hypothesis," Papers 2305.13123, arXiv.org.
    16. Masaaki Fukasawa & Blanka Horvath & Peter Tankov, 2021. "Hedging under rough volatility," Papers 2105.04073, arXiv.org.
    17. Shternshis, Andrey & Mazzarisi, Piero & Marmi, Stefano, 2022. "Measuring market efficiency: The Shannon entropy of high-frequency financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    18. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    19. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    20. Xavier Brouty & Matthieu Garcin, 2023. "A statistical test of market efficiency based on information theory," Quantitative Finance, Taylor & Francis Journals, vol. 23(6), pages 1003-1018, June.
    21. Matthieu Garcin, 2022. "Forecasting with fractional Brownian motion: a financial perspective," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1495-1512, August.
    22. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    2. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    3. R. Vilela Mendes, 2022. "The fractional volatility model and rough volatility," Papers 2206.02205, arXiv.org.
    4. Masanori Hirano & Kentaro Imajo & Kentaro Minami & Takuya Shimada, 2023. "Efficient Learning of Nested Deep Hedging using Multiple Options," Papers 2305.12264, arXiv.org.
    5. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    6. Alexander Subbotin & Thierry Chauveau & Kateryna Shapovalova, 2009. "Volatility Models: from GARCH to Multi-Horizon Cascades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00390636, HAL.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Post-Print hal-02946146, HAL.
    8. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    9. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    10. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    11. Rui Vilela Mendes & M. J. Oliveira, 2006. "A data-reconstructed fractional volatility model," Papers math/0602013, arXiv.org, revised Jun 2007.
    12. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    13. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
    14. Giulia Di Nunno & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2022. "Option pricing in Sandwiched Volterra Volatility model," Papers 2209.10688, arXiv.org, revised Jul 2024.
    15. Hideharu Funahashi, 2017. "Pricing derivatives with fractional volatility," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-28, March.
    16. Kang Gao & Stephen Weston & Perukrishnen Vytelingum & Namid R. Stillman & Wayne Luk & Ce Guo, 2023. "Deeper Hedging: A New Agent-based Model for Effective Deep Hedging," Papers 2310.18755, arXiv.org.
    17. Masanori Hirano & Kentaro Minami & Kentaro Imajo, 2023. "Adversarial Deep Hedging: Learning to Hedge without Price Process Modeling," Papers 2307.13217, arXiv.org.
    18. Eduardo Abi Jaber, 2020. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Papers 2009.10972, arXiv.org, revised May 2022.
    19. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    20. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.07159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.