IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v88y2024ics0301420723011418.html
   My bibliography  Save this article

Improved prediction of global gold prices: An innovative Hurst-reconfiguration-based machine learning approach

Author

Listed:
  • Yang, Mo
  • Wang, Ruotong
  • Zeng, Zixun
  • Li, Peizhi

Abstract

With gold being one of the most important precious metals that play irreplaceable roles in the global market, understanding the future movement of the gold price is of significant importance for investment and risk management worldwide. However, gold prices are subject to volatility and can experience significant fluctuations over time due to economic uncertainty shocks such as the China-US Trade War, Russia-Ukraine war, and COVID-19, which make the forecasting of gold price a challenging task. In this paper, we propose a hybrid forecasting model for gold prices based on the Hurst-oriented reconfiguration and machine learning approach and illustrate its usefulness by analyzing the gold prices of three major markets. We conduct a multifractal analysis of the decomposed series and scrutinize the predictability of each sub-series and its relationship with the Hurst exponent. Empirical results show that there are negative relationships between forecasting error and the Hurst exponent and between the number of embedding dimensions and the Hurst exponent. Our Hurst-based hybrid model outperforms other conventional prediction models in terms of prediction errors and accuracy of direction prediction. The findings of this study shed light on a better understanding of the temporal features of the gold market and provide references for improving investment and hedging strategies.

Suggested Citation

  • Yang, Mo & Wang, Ruotong & Zeng, Zixun & Li, Peizhi, 2024. "Improved prediction of global gold prices: An innovative Hurst-reconfiguration-based machine learning approach," Resources Policy, Elsevier, vol. 88(C).
  • Handle: RePEc:eee:jrpoli:v:88:y:2024:i:c:s0301420723011418
    DOI: 10.1016/j.resourpol.2023.104430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723011418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.104430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Hedi Arouri, Mohamed & Lahiani, Amine & Nguyen, Duc Khuong, 2015. "World gold prices and stock returns in China: Insights for hedging and diversification strategies," Economic Modelling, Elsevier, vol. 44(C), pages 273-282.
    2. Opong, Kwaku K. & Mulholland, Gwyneth & Fox, Alan F. & Farahmand, Kambiz, 1999. "The behaviour of some UK equity indices: An application of Hurst and BDS tests1," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 267-282, September.
    3. Ibrahim Yousef & Esam Shehadeh, 2020. "The Impact of COVID-19 on Gold Price Volatility," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 353-364.
    4. Zhang, Pinyi & Ci, Bicong, 2020. "Deep belief network for gold price forecasting," Resources Policy, Elsevier, vol. 69(C).
    5. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla, 2014. "Multifractal detrended cross-correlation analysis of gold price and SENSEX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 195-204.
    6. J.-P. Bouchaud & M. Potters & M. Meyer, 2000. "Apparent multifractality in financial time series," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 595-599, February.
    7. Gary Grudnitski & Larry Osburn, 1993. "Forecasting S&P and gold futures prices: An application of neural networks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(6), pages 631-643, September.
    8. repec:dau:papers:123456789/14980 is not listed on IDEAS
    9. Liu, Chang & Hu, Zhenhua & Li, Yan & Liu, Shaojun, 2017. "Forecasting copper prices by decision tree learning," Resources Policy, Elsevier, vol. 52(C), pages 427-434.
    10. A. Arnéodo & N. Decoster & S.G. Roux, 2000. "A wavelet-based method for multifractal image analysis. I. Methodology and test applications on isotropic and anisotropic random rough surfaces," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 15(3), pages 567-600, June.
    11. E, Jianwei & Ye, Jimin & Jin, Haihong, 2019. "A novel hybrid model on the prediction of time series and its application for the gold price analysis and forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    12. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    13. Xian, Lu & He, Kaijian & Lai, Kin Keung, 2016. "Gold price analysis based on ensemble empirical model decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 11-23.
    14. Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
    15. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    16. Ruan, Qingsong & Cui, Hao & Fan, Liming, 2020. "China’s soybean crush spread: Nonlinear analysis based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    17. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    18. Parisi, Antonino & Parisi, Franco & Díaz, David, 2008. "Forecasting gold price changes: Rolling and recursive neural network models," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 477-487, December.
    19. Matthieu Garcin, 2022. "Forecasting with fractional Brownian motion: a financial perspective," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1495-1512, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    2. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    3. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2020. "Point and interval forecasting for metal prices based on variational mode decomposition and an optimized outlier-robust extreme learning machine," Resources Policy, Elsevier, vol. 69(C).
    4. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    5. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    6. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    7. He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).
    8. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    9. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    10. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.
    11. Li, Ning & Li, Jiaojiao & Wang, Qizhou & Yan, Dairong & Wang, Liguan & Jia, Mingtao, 2024. "A novel copper price forecasting ensemble method using adversarial interpretive structural model and sparrow search algorithm," Resources Policy, Elsevier, vol. 91(C).
    12. Li, Xing, 2021. "On the multifractal analysis of air quality index time series before and during COVID-19 partial lockdown: A case study of Shanghai, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    13. F. Cavalli & A. Naimzada & N. Pecora & M. Pireddu, 2021. "Market sentiment and heterogeneous agents in an evolutive financial model," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1189-1219, September.
    14. Aviral K. Tiwari & Claudiu T. Albulescu & Rangan Gupta, 2016. "Time-frequency relationship between US output with commodity and asset prices," Applied Economics, Taylor & Francis Journals, vol. 48(3), pages 227-242, January.
    15. Zhang, Guofu & Li, Jingjing, 2018. "Multifractal analysis of Shanghai and Hong Kong stock markets before and after the connect program," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 611-622.
    16. Xiao, Yu-jie & Wang, Xiao-kang & Wang, Jian-qiang & Zhang, Hong-yu, 2021. "An adaptive decomposition and ensemble model for short-term air pollutant concentration forecast using ICEEMDAN-ICA," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    17. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    18. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    19. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    20. Omar Zulaica, 2020. "What share for gold? On the interaction of gold and foreign exchange reserve returns," BIS Working Papers 906, Bank for International Settlements.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:88:y:2024:i:c:s0301420723011418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.