Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
- Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
- Haiyao Wang & Jianxuan Wang & Lihui Cao & Yifan Li & Qiuhong Sun & Jingyang Wang & Kai Hu, 2021. "A Stock Closing Price Prediction Model Based on CNN-BiSLSTM," Complexity, Hindawi, vol. 2021, pages 1-12, September.
- Qi Tang & Ruchen Shi & Tongmei Fan & Yidan Ma & Jingyan Huang, 2021. "Prediction of Financial Time Series Based on LSTM Using Wavelet Transform and Singular Spectrum Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, June.
- Wang, Bin & Wang, Jun, 2020. "Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation," Energy Economics, Elsevier, vol. 90(C).
- Xingyu Zhou & Zhisong Pan & Guyu Hu & Siqi Tang & Cheng Zhao, 2018. "Stock Market Prediction on High-Frequency Data Using Generative Adversarial Nets," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, April.
- Lin, Yu & Liao, Qidong & Lin, Zixiao & Tan, Bin & Yu, Yuanyuan, 2022. "A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction," Resources Policy, Elsevier, vol. 78(C).
- Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
- Nan Jing & Qi Liu & Hefei Wang, 2021. "Stock price prediction based on stock price synchronicity and deep learning," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-21, June.
- Chuen Yik Kang & Chin Poo Lee & Kian Ming Lim, 2022. "Cryptocurrency Price Prediction with Convolutional Neural Network and Stacked Gated Recurrent Unit," Data, MDPI, vol. 7(11), pages 1-13, October.
- Saeed Nosratabadi & Amir Mosavi & Puhong Duan & Pedram Ghamisi, 2020. "Data Science in Economics," Papers 2003.13422, arXiv.org.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," MetaArXiv haf2v, Center for Open Science.
- Jiayu Qiu & Bin Wang & Changjun Zhou, 2020. "Forecasting stock prices with long-short term memory neural network based on attention mechanism," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
- Jiangwei Liu & Xiaohong Huang, 2021. "Forecasting Crude Oil Price Using Event Extraction," Papers 2111.09111, arXiv.org.
- Wenjie Lu & Jiazheng Li & Yifan Li & Aijun Sun & Jingyang Wang, 2020. "A CNN-LSTM-Based Model to Forecast Stock Prices," Complexity, Hindawi, vol. 2020, pages 1-10, November.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," SocArXiv 9vdwf, Center for Open Science.
- Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
- Zexin Hu & Yiqi Zhao & Matloob Khushi, 2021. "A Survey of Forex and Stock Price Prediction Using Deep Learning," Papers 2103.09750, arXiv.org.
- Xu, Kunliang & Niu, Hongli, 2022. "Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," OSF Preprints yc6e2, Center for Open Science.
- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Qiutong Guo & Shun Lei & Qing Ye & Zhiyang Fang, 2021. "MRC-LSTM: A Hybrid Approach of Multi-scale Residual CNN and LSTM to Predict Bitcoin Price," Papers 2105.00707, arXiv.org.
- Saeed Nosratabadi & Amirhosein Mosavi & Puhong Duan & Pedram Ghamisi & Ferdinand Filip & Shahab S. Band & Uwe Reuter & Joao Gama & Amir H. Gandomi, 2020. "Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," Thesis Commons auyvc, Center for Open Science.
- Hualing Lin & Qiubi Sun, 2020. "Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks," Energies, MDPI, vol. 13(7), pages 1-21, March.
- Yue Zhang & Fangai Liu, 2020. "An Improved Deep Belief Network Prediction Model Based on Knowledge Transfer," Future Internet, MDPI, vol. 12(11), pages 1-18, October.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," EdArXiv 5dwrt, Center for Open Science.
- Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
- Marcus Vinicius Santos & Fernando Morgado-Dias & Thiago C. Silva, 2023. "Oil Sector and Sentiment Analysis—A Review," Energies, MDPI, vol. 16(12), pages 1-29, June.
- Lin, Yong & Wang, Renyu & Gong, Xingyue & Jia, Guozhu, 2022. "Cross-correlation and forecast impact of public attention on USD/CNY exchange rate: Evidence from Baidu Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- David G. Green, 2023. "Emergence in complex networks of simple agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 419-462, July.
- Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
- Yong-Chao Su & Cheng-Yu Wu & Cheng-Hong Yang & Bo-Sheng Li & Sin-Hua Moi & Yu-Da Lin, 2021. "Machine Learning Data Imputation and Prediction of Foraging Group Size in a Kleptoparasitic Spider," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
- Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
- Urko Aguirre-Larracoechea & Cruz E. Borges, 2021. "Imputation for Repeated Bounded Outcome Data: Statistical and Machine-Learning Approaches," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
- Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
- ErLe Du & Meng Ji, 2021. "Analyzing the regional economic changes in a high-tech industrial development zone using machine learning algorithms," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-18, June.
- Steve J. Bickley & Benno Torgler, 2021. "Behavioural Economics, What Have we Missed? Exploring “Classical” Behavioural Economics Roots in AI, Cognitive Psychology, and Complexity Theory," CREMA Working Paper Series 2021-21, Center for Research in Economics, Management and the Arts (CREMA).
- Oliver Hümbelin & Lukas Hobi & Robert Fluder, 2021. "Rich Cities, Poor Countryside? Social Structure of the Poor and Poverty Risks in Urban and Rural Places in an Affluent Country. An Administrative Data based Analysis using Random Forest," University of Bern Social Sciences Working Papers 40, University of Bern, Department of Social Sciences, revised 10 Nov 2021.
- Petr Suler & Zuzana Rowland & Tomas Krulicky, 2021. "Evaluation of the Accuracy of Machine Learning Predictions of the Czech Republic’s Exports to the China," JRFM, MDPI, vol. 14(2), pages 1-30, February.
- Saeed Nosratabadi & Nesrine Khazami & Marwa Ben Abdallah & Zoltan Lackner & Shahab S. Band & Amir Mosavi & Csaba Mako, 2020. "Social Capital Contributions to Food Security: A Comprehensive Literature Review," Papers 2012.03606, arXiv.org.
- Meir Russ, 2021. "Knowledge Management for Sustainable Development in the Era of Continuously Accelerating Technological Revolutions: A Framework and Models," Sustainability, MDPI, vol. 13(6), pages 1-32, March.
- Amir Masoud Rahmani & Efat Yousefpoor & Mohammad Sadegh Yousefpoor & Zahid Mehmood & Amir Haider & Mehdi Hosseinzadeh & Rizwan Ali Naqvi, 2021. "Machine Learning (ML) in Medicine: Review, Applications, and Challenges," Mathematics, MDPI, vol. 9(22), pages 1-52, November.
- Labib Shami & Teddy Lazebnik, 2024. "Implementing Machine Learning Methods in Estimating the Size of the Non-observed Economy," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1459-1476, April.
- Cui, Xiwen & Yu, Xiaoyu & Niu, Dongxiao, 2024. "The ultra-short-term wind power point-interval forecasting model based on improved variational mode decomposition and bidirectional gated recurrent unit improved by improved sparrow search algorithm a," Energy, Elsevier, vol. 288(C).
- Di Wu & Zhenning Xu & Seung Bach, 2023. "Using Google Trends to predict and forecast avocado sales," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 629-641, December.
- Liang She & Jianyuan Wang & Yifan Bo & Yangyan Zeng, 2022. "MACA: Multi-Agent with Credit Assignment for Computation Offloading in Smart Parks Monitoring," Mathematics, MDPI, vol. 10(23), pages 1-18, December.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2023-05-29 (Big Data)
- NEP-CMP-2023-05-29 (Computational Economics)
- NEP-DES-2023-05-29 (Economic Design)
- NEP-ECM-2023-05-29 (Econometrics)
- NEP-ETS-2023-05-29 (Econometric Time Series)
- NEP-FOR-2023-05-29 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2305.04811. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.