IDEAS home Printed from https://ideas.repec.org/a/wsi/ijfexx/v08y2021i02ns2424786321410103.html
   My bibliography  Save this article

Stock price prediction based on stock price synchronicity and deep learning

Author

Listed:
  • Nan Jing

    (SHU-UTS SILC Business School, Shanghai University, Shanghai, P. R. China)

  • Qi Liu

    (SHU-UTS SILC Business School, Shanghai University, Shanghai, P. R. China)

  • Hefei Wang

    (#x2020;International College, Renmin University of China, Beijing, P. R. China)

Abstract

Deep learning technology has been widely used in the financial industry, primarily for improving financial time series prediction based on stock prices. To solve the problem of low fitting and poor accuracy in traditional stock price prediction models, this paper proposes a stock price prediction model based on stock price synchronicity and deep learning methods, which applied the stock price synchronicity theory in stock price trend analysis. This paper first uses the affinity propagation algorithm to build stock clusters, and then, based on convolution neural network (CNN), and feature weight to construct the stock price synchronicity factor. At last, the long short-term memory (LSTM) network with multifactor is built for stock price trend analysis. According to the theory of stock price synchronicity, the affinity propagation algorithm can find the potential related stocks of the target stock. The spatial data analysis ability of the CNN model provides a guarantee for the application in stock price synchronicity factor analysis. The LSTM model can better analyze the information contained in the stock price time series and predict the future price. The experimental results show that, compared with the traditional multilayer neural network model, the LSTM model has better accuracy in the trend prediction of the stock price. Simultaneously, the application of stock price synchronicity effectively improves the performance of the multifactor LSTM network.

Suggested Citation

  • Nan Jing & Qi Liu & Hefei Wang, 2021. "Stock price prediction based on stock price synchronicity and deep learning," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-21, June.
  • Handle: RePEc:wsi:ijfexx:v:08:y:2021:i:02:n:s2424786321410103
    DOI: 10.1142/S2424786321410103
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2424786321410103
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2424786321410103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijfexx:v:08:y:2021:i:02:n:s2424786321410103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/worldscinet/ijfe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.