IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1543-d337042.html
   My bibliography  Save this article

Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks

Author

Listed:
  • Hualing Lin

    (The Department of Statistics, School of Economics and Management, Fuzhou University, Fuzhou 350018, China)

  • Qiubi Sun

    (The Department of Statistics, School of Economics and Management, Fuzhou University, Fuzhou 350018, China)

Abstract

Accurate prediction of crude oil prices is meaningful for reducing firm risks, stabilizing commodity prices and maintaining national financial security. Wrong crude oil price forecasts can bring huge losses to governments, enterprises, investors and even cause economic and social instability. Many classic econometrics and computational approaches show good performance for the ordinary time series prediction tasks, but not satisfactory in crude oil price predictions. They ignore the characteristics of non-linearity and non-stationarity of crude oil prices data, which hinder an accurate prediction and eventually lead to poor accuracy or the wrong result. Empirical mode decomposition (EMD) and ensemble EMD (EEMD) solve the problems of non-stationary time series forecasting, but they also generate new problems of mode mixing and reconstruction errors. We propose a hybrid method that is combination of the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and multi-layer gated recurrent unit (ML-GRU) neural network to solve the abovementioned issues. This not only deals with the issue of mode mixing effectively, but also makes the reconstruction error of data close to zero. Multi-layer GRU has an excellent ability of nonlinear data-fitting. The experimental results of real WTI crude oil dataset show that the proposed approach perform better in crude oil prices forecasts than some state-of-the-art models.

Suggested Citation

  • Hualing Lin & Qiubi Sun, 2020. "Crude Oil Prices Forecasting: An Approach of Using CEEMDAN-Based Multi-Layer Gated Recurrent Unit Networks," Energies, MDPI, vol. 13(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1543-:d:337042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1543/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1543/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    2. Basher, Syed A. & Sadorsky, Perry, 2006. "Oil price risk and emerging stock markets," Global Finance Journal, Elsevier, vol. 17(2), pages 224-251, December.
    3. Sadorsky, Perry, 2008. "Assessing the impact of oil prices on firms of different sizes: Its tough being in the middle," Energy Policy, Elsevier, vol. 36(10), pages 3854-3861, October.
    4. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
    5. Bouri, Elie & Kachacha, Imad & Roubaud, David, 2020. "Oil market conditions and sovereign risk in MENA oil exporters and importers," Energy Policy, Elsevier, vol. 137(C).
    6. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    7. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    8. Frederik Kunze & Markus Spiwoks & Kilian Bizer & Torsten Windels, 2018. "The usefulness of oil price forecasts—Evidence from survey predictions," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 39(4), pages 427-446, June.
    9. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    10. Taiyong Li & Zhenda Hu & Yanchi Jia & Jiang Wu & Yingrui Zhou, 2018. "Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning," Energies, MDPI, vol. 11(7), pages 1-23, July.
    11. Kaiser, Thomas, 1996. "One-factor-Garch models for German stocks: Estimation and forecasting," Tübinger Diskussionsbeiträge 87, University of Tübingen, School of Business and Economics.
    12. Thomas Kaiser, 1996. "One-Factor-GARCH Models for German Stocks - Estimation and Forecasting -," Econometrics 9612007, University Library of Munich, Germany.
    13. Wu, Yu-Xi & Wu, Qing-Biao & Zhu, Jia-Qi, 2019. "Improved EEMD-based crude oil price forecasting using LSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 114-124.
    14. Christoph Wegener & Tobias Basse & Frederik Kunze & Hans-Jörg von Mettenheim, 2016. "Oil prices and sovereign credit risk of oil producing countries: an empirical investigation," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1961-1968, December.
    15. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    16. Fan, Liwei & Pan, Sijia & Li, Zimin & Li, Huiping, 2016. "An ICA-based support vector regression scheme for forecasting crude oil prices," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 245-253.
    17. Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    18. Haushalter, G. David & Heron, Randall A. & Lie, Erik, 2002. "Price uncertainty and corporate value," Journal of Corporate Finance, Elsevier, vol. 8(3), pages 271-286, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
    2. Fernando Sánchez Lasheras, 2021. "Predicting the Future-Big Data and Machine Learning," Energies, MDPI, vol. 14(23), pages 1-2, December.
    3. Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.
    4. A. Usha Ruby & J. George Chellin Chandran & B. N. Chaithanya & T. J. Swasthika Jain & Renuka Patil, 2024. "Effective Crude Oil Prediction Using CHS-EMD Decomposition and PS-RNN Model," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1295-1314, August.
    5. Seong Won Moon & Tong Seop Kim, 2020. "Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability," Energies, MDPI, vol. 13(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
    3. Beckmann, Joscha & Czudaj, Robert L. & Arora, Vipin, 2020. "The relationship between oil prices and exchange rates: Revisiting theory and evidence," Energy Economics, Elsevier, vol. 88(C).
    4. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    5. Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
    6. Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.
    7. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
    8. Cheng, Fangzheng & Li, Tian & Wei, Yi-ming & Fan, Tijun, 2019. "The VEC-NAR model for short-term forecasting of oil prices," Energy Economics, Elsevier, vol. 78(C), pages 656-667.
    9. Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
    10. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
    11. E, Jianwei & Bao, Yanling & Ye, Jimin, 2017. "Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 412-427.
    12. Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
    13. Taiyong Li & Min Zhou & Chaoqi Guo & Min Luo & Jiang Wu & Fan Pan & Quanyi Tao & Ting He, 2016. "Forecasting Crude Oil Price Using EEMD and RVM with Adaptive PSO-Based Kernels," Energies, MDPI, vol. 9(12), pages 1-21, December.
    14. Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
    15. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    16. Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
    17. Czudaj, Robert L., 2022. "Heterogeneity of beliefs and information rigidity in the crude oil market: Evidence from survey data," European Economic Review, Elsevier, vol. 143(C).
    18. Taiyong Li & Zhenda Hu & Yanchi Jia & Jiang Wu & Yingrui Zhou, 2018. "Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning," Energies, MDPI, vol. 11(7), pages 1-23, July.
    19. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    20. Yingrui Zhou & Taiyong Li & Jiayi Shi & Zijie Qian, 2019. "A CEEMDAN and XGBOOST-Based Approach to Forecast Crude Oil Prices," Complexity, Hindawi, vol. 2019, pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1543-:d:337042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.