IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9942410.html
   My bibliography  Save this article

Prediction of Financial Time Series Based on LSTM Using Wavelet Transform and Singular Spectrum Analysis

Author

Listed:
  • Qi Tang
  • Ruchen Shi
  • Tongmei Fan
  • Yidan Ma
  • Jingyan Huang

Abstract

In order to further overcome the difficulties of the existing models in dealing with the nonstationary and nonlinear characteristics of high-frequency financial time series data, especially their weak generalization ability, this paper proposes an ensemble method based on data denoising methods, including the wavelet transform (WT) and singular spectrum analysis (SSA), and long-term short-term memory neural network (LSTM) to build a data prediction model. The financial time series is decomposed and reconstructed by WT and SSA to denoise. Under the condition of denoising, the smooth sequence with effective information is reconstructed. The smoothing sequence is introduced into LSTM and the predicted value is obtained. With the Dow Jones industrial average index (DJIA) as the research object, the closing price of the DJIA every five minutes is divided into short term (1 hour), medium term (3 hours), and long term (6 hours), respectively. Based on root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and absolute percentage error standard deviation (SDAPE), the experimental results show that in the short term, medium term, and long term, data denoising can greatly improve the stability of the prediction and can effectively improve the generalization ability of LSTM prediction model. As WT and SSA can extract useful information from the original sequence and avoid overfitting, the hybrid model can better grasp the sequence pattern of the closing price of the DJIA.

Suggested Citation

  • Qi Tang & Ruchen Shi & Tongmei Fan & Yidan Ma & Jingyan Huang, 2021. "Prediction of Financial Time Series Based on LSTM Using Wavelet Transform and Singular Spectrum Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, June.
  • Handle: RePEc:hin:jnlmpe:9942410
    DOI: 10.1155/2021/9942410
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9942410.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9942410.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9942410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Gao & Baifu Cao & Wenhao Yu & Lu Yi & Fengqi Guo, 2024. "Short-Term Wind Speed Prediction for Bridge Site Area Based on Wavelet Denoising OOA-Transformer," Mathematics, MDPI, vol. 12(12), pages 1-22, June.
    2. Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9942410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.