Forecasting stock prices with long-short term memory neural network based on attention mechanism
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0227222
Download full text from publisher
References listed on IDEAS
- Huicheng Liu, 2018. "Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network," Papers 1811.06173, arXiv.org.
- Diego Ardila & Didier Sornette, 2016. "Dating the Financial Cycle: A Wavelet Proposition," Swiss Finance Institute Research Paper Series 16-29, Swiss Finance Institute, revised May 2016.
- Ardila, Diego & Sornette, Didier, 2016. "Dating the financial cycle with uncertainty estimates: a wavelet proposition," Finance Research Letters, Elsevier, vol. 19(C), pages 298-304.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tran, Thuy Nhung, 2022. "The Volatility of the Stock Market and Financial Cycle: GARCH Family Models," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 151-168.
- Strohsal, Till & Proaño, Christian R. & Wolters, Jürgen, 2019.
"Characterizing the financial cycle: Evidence from a frequency domain analysis,"
Journal of Banking & Finance, Elsevier, vol. 106(C), pages 568-591.
- Strohsal, Till & Proaño, Christian R. & Wolters, Jürgen, 2015. "Characterizing the Financial Cycle: Evidence from a Frequency Domain Analysis," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113143, Verein für Socialpolitik / German Economic Association.
- Strohsal, Till & Proaño Acosta, Christian & Wolters, Jürgen, 2015. "Characterizing the financial cycle: Evidence from a frequency domain analysis," SFB 649 Discussion Papers 2015-021, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Till Strohsal & Christian R. Proaño & Jürgen Wolters, 2017. "Characterizing the financial cycle: evidence from a frequency domain analysis," IMK Working Paper 189-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
- Strohsal, Till & Proaño, Christian R. & Wolters, Jürgen, 2015. "Characterizing the financial cycle: Evidence from a frequency domain analysis," Discussion Papers 22/2015, Deutsche Bundesbank.
- Saulius Jokubaitis & Dmitrij Celov, 2022. "Business Cycle Synchronization in the EU: A Regional-Sectoral Look through Soft-Clustering and Wavelet Decomposition," Papers 2206.14128, arXiv.org.
- Montserrat Reyna Miranda & Ricardo Massa Roldán & Vicente Gómez Salcido, 2022. "Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 17(1), pages 1-23, Enero - M.
- C. Colther & J. L. Rojo & R. Hornero, 2022. "A Wavelet Method for Detecting Turning Points in the Business Cycle," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 171-187, July.
- Greg Farrell & Esti Kemp, 2020. "Measuring the Financial Cycle in South Africa," South African Journal of Economics, Economic Society of South Africa, vol. 88(2), pages 123-144, June.
- Dalia Mansour-Ibrahim, 2023. "Are the Eurozone Financial and Business Cycles Convergent Across Time and Frequency?," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 389-427, January.
- Malgorzata Porada - Rochon, 2020. "The Length of Financial Cycle and its Impact on Business Cycle in Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1278-1290.
- Zhihan Zhou & Liqian Ma & Han Liu, 2021. "Trade the Event: Corporate Events Detection for News-Based Event-Driven Trading," Papers 2105.12825, arXiv.org, revised May 2021.
- Süreyya Özöğür Akyüz & Pınar Karadayı Ataş & Aymane Benkhaldoun, 2024. "Predicting stock market by sentiment analysis and deep learning," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(2), pages 85-107.
- Saurabh Kamal & Sahil Sharma & Vijay Kumar & Hammam Alshazly & Hany S. Hussein & Thomas Martinetz, 2022. "Trading Stocks Based on Financial News Using Attention Mechanism," Mathematics, MDPI, vol. 10(12), pages 1-30, June.
- Martin Mandler & Michael Scharnagl, 2022. "Financial Cycles in Euro Area Economies: A Cross‐Country Perspective Using Wavelet Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(3), pages 569-593, June.
- Yiqi Deng & Siu Ming Yiu, 2022. "Deep Multiple Instance Learning For Forecasting Stock Trends Using Financial News," Papers 2206.14452, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0227222. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.