IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.05351.html
   My bibliography  Save this paper

The Wall Street Neophyte: A Zero-Shot Analysis of ChatGPT Over MultiModal Stock Movement Prediction Challenges

Author

Listed:
  • Qianqian Xie
  • Weiguang Han
  • Yanzhao Lai
  • Min Peng
  • Jimin Huang

Abstract

Recently, large language models (LLMs) like ChatGPT have demonstrated remarkable performance across a variety of natural language processing tasks. However, their effectiveness in the financial domain, specifically in predicting stock market movements, remains to be explored. In this paper, we conduct an extensive zero-shot analysis of ChatGPT's capabilities in multimodal stock movement prediction, on three tweets and historical stock price datasets. Our findings indicate that ChatGPT is a "Wall Street Neophyte" with limited success in predicting stock movements, as it underperforms not only state-of-the-art methods but also traditional methods like linear regression using price features. Despite the potential of Chain-of-Thought prompting strategies and the inclusion of tweets, ChatGPT's performance remains subpar. Furthermore, we observe limitations in its explainability and stability, suggesting the need for more specialized training or fine-tuning. This research provides insights into ChatGPT's capabilities and serves as a foundation for future work aimed at improving financial market analysis and prediction by leveraging social media sentiment and historical stock data.

Suggested Citation

  • Qianqian Xie & Weiguang Han & Yanzhao Lai & Min Peng & Jimin Huang, 2023. "The Wall Street Neophyte: A Zero-Shot Analysis of ChatGPT Over MultiModal Stock Movement Prediction Challenges," Papers 2304.05351, arXiv.org, revised Apr 2023.
  • Handle: RePEc:arx:papers:2304.05351
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.05351
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Menéndez Medina & José Antonio Heredia Álvaro, 2024. "Using Generative Pre-Trained Transformers (GPT) for Electricity Price Trend Forecasting in the Spanish Market," Energies, MDPI, vol. 17(10), pages 1-15, May.
    2. Ummara Mumtaz & Summaya Mumtaz, 2023. "Potential of ChatGPT in predicting stock market trends based on Twitter Sentiment Analysis," Papers 2311.06273, arXiv.org.
    3. Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
    4. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.
    5. Chang Zong & Jian Shao & Weiming Lu & Yueting Zhuang, 2024. "Stock Movement Prediction with Multimodal Stable Fusion via Gated Cross-Attention Mechanism," Papers 2406.06594, arXiv.org.
    6. Qianqian Xie & Dong Li & Mengxi Xiao & Zihao Jiang & Ruoyu Xiang & Xiao Zhang & Zhengyu Chen & Yueru He & Weiguang Han & Yuzhe Yang & Shunian Chen & Yifei Zhang & Lihang Shen & Daniel Kim & Zhiwei Liu, 2024. "Open-FinLLMs: Open Multimodal Large Language Models for Financial Applications," Papers 2408.11878, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Linyi Yang & Yingpeng Ma & Yue Zhang, 2023. "Measuring Consistency in Text-based Financial Forecasting Models," Papers 2305.08524, arXiv.org, revised Jun 2023.
    3. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport," Papers 2106.12950, arXiv.org, revised Jun 2021.
    4. Jiezhu Cheng & Kaizhu Huang & Zibin Zheng, 2023. "Can Perturbations Help Reduce Investment Risks? Risk-Aware Stock Recommendation via Split Variational Adversarial Training," Papers 2304.11043, arXiv.org, revised Jan 2024.
    5. Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Deep Risk Model: A Deep Learning Solution for Mining Latent Risk Factors to Improve Covariance Matrix Estimation," Papers 2107.05201, arXiv.org, revised Oct 2021.
    6. Xiao Yang & Weiqing Liu & Dong Zhou & Jiang Bian & Tie-Yan Liu, 2020. "Qlib: An AI-oriented Quantitative Investment Platform," Papers 2009.11189, arXiv.org.
    7. Jiexia Ye & Juanjuan Zhao & Kejiang Ye & Chengzhong Xu, 2020. "Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction," Papers 2005.04955, arXiv.org, revised Oct 2020.
    8. Abbas Haider & Hui Wang & Bryan Scotney & Glenn Hawe, 2022. "Predictive Market Making via Machine Learning," SN Operations Research Forum, Springer, vol. 3(1), pages 1-21, March.
    9. Hui Niu & Siyuan Li & Jian Li, 2022. "MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization," Papers 2210.01774, arXiv.org.
    10. Shwai He & Shi Gu, 2021. "Multi-modal Attention Network for Stock Movements Prediction," Papers 2112.13593, arXiv.org, revised Oct 2022.
    11. Ramit Sawhney & Shivam Agarwal & Vivek Mittal & Paolo Rosso & Vikram Nanda & Sudheer Chava, 2022. "Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial Task & Hyperbolic Models," Papers 2206.06320, arXiv.org.
    12. Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
    13. Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
    14. Hwang, Yoontae & Park, Junpyo & Lee, Yongjae & Lim, Dong-Young, 2023. "Stop-loss adjusted labels for machine learning-based trading of risky assets," Finance Research Letters, Elsevier, vol. 58(PA).
    15. Junran Wu & Ke Xu & Xueyuan Chen & Shangzhe Li & Jichang Zhao, 2021. "Price graphs: Utilizing the structural information of financial time series for stock prediction," Papers 2106.02522, arXiv.org, revised Nov 2021.
    16. Thanh Trung Huynh & Minh Hieu Nguyen & Thanh Tam Nguyen & Phi Le Nguyen & Matthias Weidlich & Quoc Viet Hung Nguyen & Karl Aberer, 2022. "Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction," Papers 2211.07400, arXiv.org, revised Nov 2022.
    17. Sihang Chen & Weiqi Luo & Chao Yu, 2021. "Reinforcement Learning with Expert Trajectory For Quantitative Trading," Papers 2105.03844, arXiv.org.
    18. Sheng Xiang & Dawei Cheng & Chencheng Shang & Ying Zhang & Yuqi Liang, 2023. "Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction," Papers 2305.08740, arXiv.org.
    19. Yu Zhao & Huaming Du & Ying Liu & Shaopeng Wei & Xingyan Chen & Fuzhen Zhuang & Qing Li & Ji Liu & Gang Kou, 2022. "Stock Movement Prediction Based on Bi-typed Hybrid-relational Market Knowledge Graph via Dual Attention Networks," Papers 2201.04965, arXiv.org, revised Jan 2022.
    20. Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.05351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.