IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2206.06320.html
   My bibliography  Save this paper

Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial Task & Hyperbolic Models

Author

Listed:
  • Ramit Sawhney
  • Shivam Agarwal
  • Vivek Mittal
  • Paolo Rosso
  • Vikram Nanda
  • Sudheer Chava

Abstract

The rapid spread of information over social media influences quantitative trading and investments. The growing popularity of speculative trading of highly volatile assets such as cryptocurrencies and meme stocks presents a fresh challenge in the financial realm. Investigating such "bubbles" - periods of sudden anomalous behavior of markets are critical in better understanding investor behavior and market dynamics. However, high volatility coupled with massive volumes of chaotic social media texts, especially for underexplored assets like cryptocoins pose a challenge to existing methods. Taking the first step towards NLP for cryptocoins, we present and publicly release CryptoBubbles, a novel multi-span identification task for bubble detection, and a dataset of more than 400 cryptocoins from 9 exchanges over five years spanning over two million tweets. Further, we develop a set of sequence-to-sequence hyperbolic models suited to this multi-span identification task based on the power-law dynamics of cryptocurrencies and user behavior on social media. We further test the effectiveness of our models under zero-shot settings on a test set of Reddit posts pertaining to 29 "meme stocks", which see an increase in trade volume due to social media hype. Through quantitative, qualitative, and zero-shot analyses on Reddit and Twitter spanning cryptocoins and meme-stocks, we show the practical applicability of CryptoBubbles and hyperbolic models.

Suggested Citation

  • Ramit Sawhney & Shivam Agarwal & Vivek Mittal & Paolo Rosso & Vikram Nanda & Sudheer Chava, 2022. "Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial Task & Hyperbolic Models," Papers 2206.06320, arXiv.org.
  • Handle: RePEc:arx:papers:2206.06320
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2206.06320
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi, 2019. "Detecting Financial Collapse and Ballooning Sovereign Risk," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(6), pages 1336-1361, December.
    2. Jinan Liu & Apostolos Serletis, 2019. "Volatility in the Cryptocurrency Market," Open Economies Review, Springer, vol. 30(4), pages 779-811, September.
    3. Harvey, David I. & Leybourne, Stephen J. & Sollis, Robert & Taylor, A.M. Robert, 2016. "Tests for explosive financial bubbles in the presence of non-stationary volatility," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 548-574.
    4. Y. Malevergne & V. Pisarenko & D. Sornette, 2005. "Empirical distributions of stock returns: between the stretched exponential and the power law?," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 379-401.
    5. Froot, Kenneth A & Obstfeld, Maurice, 1991. "Intrinsic Bubbles: The Case of Stock Prices," American Economic Review, American Economic Association, vol. 81(5), pages 1189-1214, December.
    6. Ronny Luss & Alexandre D'Aspremont, 2015. "Predicting abnormal returns from news using text classification," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 999-1012, June.
    7. Bloomfield, Robert & O'Hara, Maureen, 1999. "Market Transparency: Who Wins and Who Loses?," The Review of Financial Studies, Society for Financial Studies, vol. 12(1), pages 5-35.
    8. Cathy Yi-Hsuan Chen & Christian M. Hafner, 2019. "Sentiment-Induced Bubbles in the Cryptocurrency Market," JRFM, MDPI, vol. 12(2), pages 1-12, April.
    9. Jinan Liu & Apostolos Serletis, 2019. "Volatility in the Cryptocurrency Market," Open Economies Review, Springer, vol. 30(4), pages 779-811, September.
    10. Aloosh, Arash & Ouzan, Samuel, 2020. "The psychology of cryptocurrency prices," Finance Research Letters, Elsevier, vol. 33(C).
    11. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    12. repec:aei:rpbook:52719 is not listed on IDEAS
    13. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    14. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    15. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    16. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    17. Winkler, Julian & Semenova, Valentina, 2021. "Reddit's self-organised bull runs: Social contagion and asset prices," INET Oxford Working Papers 2021-04, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2021.
    18. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    19. Arianna Agosto & Alessia Cafferata, 2020. "Financial Bubbles: A Study of Co-Explosivity in the Cryptocurrency Market," Risks, MDPI, vol. 8(2), pages 1-14, April.
    20. James Angel & Douglas McCabe, 2013. "Fairness in Financial Markets: The Case of High Frequency Trading," Journal of Business Ethics, Springer, vol. 112(4), pages 585-595, February.
    21. Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
    22. Vasiliki Plerou & Parameswaran Gopikrishnan & Xavier Gabaix & H. Eugene Stanley, 2004. "On the Origin of Power-Law Fluctuations in Stock Prices," Papers cond-mat/0403067, arXiv.org.
    23. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    24. Cooper, Ricky & Davis, Michael & Van Vliet, Ben, 2016. "The Mysterious Ethics of High-Frequency Trading," Business Ethics Quarterly, Cambridge University Press, vol. 26(1), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anubhav Sarkar & Swagata Chakraborty & Sohom Ghosh & Sudip Kumar Naskar, 2022. "Evaluating Impact of Social Media Posts by Executives on Stock Prices," Papers 2211.01287, arXiv.org, revised Dec 2022.
    2. Nobanee, Haitham & Ellili, Nejla Ould Daoud, 2023. "What do we know about meme stocks? A bibliometric and systematic review, current streams, developments, and directions for future research," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 589-602.
    3. Wu, Zewen, 2024. "Are we in a bubble? Financial vulnerabilities in semiconductor, Web3, and genetic engineering markets," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 32-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Demmler & Amilcar Orlian Fernández Domínguez, 2021. "Bitcoin and the South Sea Company: A comparative analysis," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 13(1), pages 197-224, March.
    2. Li, Mu-Yao & Cai, Qing & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Exponentially decayed double power-law distribution of Bitcoin trade sizes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    3. Caravello, Tomas E. & Psaradakis, Zacharias & Sola, Martin, 2023. "Rational bubbles: Too many to be true?," Journal of Economic Dynamics and Control, Elsevier, vol. 151(C).
    4. Ivanovski, Kris & Hailemariam, Abebe, 2023. "Forecasting the stock-cryptocurrency relationship: Evidence from a dynamic GAS model," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 97-111.
    5. Apostolos Ampountolas, 2022. "Cryptocurrencies Intraday High-Frequency Volatility Spillover Effects Using Univariate and Multivariate GARCH Models," IJFS, MDPI, vol. 10(3), pages 1-22, July.
    6. De Pace, Pierangelo & Rao, Jayant, 2023. "Comovement and instability in cryptocurrency markets," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 173-200.
    7. Aiman Hairudin & Azhar Mohamad, 2024. "The isotropy of cryptocurrency volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3779-3810, July.
    8. Bojaj, Martin M. & Muhadinovic, Milica & Bracanovic, Andrej & Mihailovic, Andrej & Radulovic, Mladen & Jolicic, Ivan & Milosevic, Igor & Milacic, Veselin, 2022. "Forecasting macroeconomic effects of stablecoin adoption: A Bayesian approach," Economic Modelling, Elsevier, vol. 109(C).
    9. Larisa V. Sannikova, 2022. "Risks of Using Cryptoassets in Russia and the Potential for Mitigation," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 124-138, December.
    10. Arthur A. B. Pessa & Matjaz Perc & Haroldo V. Ribeiro, 2023. "Age and market capitalization drive large price variations of cryptocurrencies," Papers 2302.12319, arXiv.org.
    11. Gianna Figá-Talamanca & Sergio Focardi & Marco Patacca, 2021. "Common dynamic factors for cryptocurrencies and multiple pair-trading statistical arbitrages," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 863-882, December.
    12. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    13. Hwang, Yoontae & Park, Junpyo & Lee, Yongjae & Lim, Dong-Young, 2023. "Stop-loss adjusted labels for machine learning-based trading of risky assets," Finance Research Letters, Elsevier, vol. 58(PA).
    14. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    15. Alessio Brini & Jimmie Lenz, 2024. "A Comparison of Cryptocurrency Volatility-benchmarking New and Mature Asset Classes," Papers 2404.04962, arXiv.org.
    16. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    17. Yang Hu, 2023. "A review of Phillips‐type right‐tailed unit root bubble detection tests," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 141-158, February.
    18. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    19. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. David G. McMillan, 2010. "Present Value Model, Bubbles and Returns Predictability: Sector‐Level Evidence," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 37(5‐6), pages 668-686, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2206.06320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.