Can Perturbations Help Reduce Investment Risks? Risk-Aware Stock Recommendation via Split Variational Adversarial Training
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
- Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ramit Sawhney & Shivam Agarwal & Vivek Mittal & Paolo Rosso & Vikram Nanda & Sudheer Chava, 2022. "Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial Task & Hyperbolic Models," Papers 2206.06320, arXiv.org.
- Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
- Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Andrea Bucci, 2020.
"Realized Volatility Forecasting with Neural Networks,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Andrea Bucci, 0. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
- Bucci, Andrea, 2019. "Realized Volatility Forecasting with Neural Networks," MPRA Paper 95443, University Library of Munich, Germany.
- Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model," Papers 2203.01326, arXiv.org.
- Linyi Yang & Yingpeng Ma & Yue Zhang, 2023. "Measuring Consistency in Text-based Financial Forecasting Models," Papers 2305.08524, arXiv.org, revised Jun 2023.
- Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
- Rian Dolphin & Barry Smyth & Ruihai Dong, 2024. "Contrastive Learning of Asset Embeddings from Financial Time Series," Papers 2407.18645, arXiv.org.
- Tomoshiro Ochiai & Jose C. Nacher, 2020. "Unveiling the directional network behind the financial statements data using volatility constraint correlation," Papers 2008.07836, arXiv.org, revised Jun 2023.
- Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
- James Wallbridge, 2020. "Transformers for Limit Order Books," Papers 2003.00130, arXiv.org.
- Antoine Proteau & Antoine Tahan & Ryad Zemouri & Marc Thomas, 2023. "Predicting the quality of a machined workpiece with a variational autoencoder approach," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 719-737, February.
- Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
- Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
- Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
- Hengxu Lin & Dong Zhou & Weiqing Liu & Jiang Bian, 2021. "Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor and Optimal Transport," Papers 2106.12950, arXiv.org, revised Jun 2021.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-RMG-2023-05-15 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.11043. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.