IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.02522.html
   My bibliography  Save this paper

Price graphs: Utilizing the structural information of financial time series for stock prediction

Author

Listed:
  • Junran Wu
  • Ke Xu
  • Xueyuan Chen
  • Shangzhe Li
  • Jichang Zhao

Abstract

Great research efforts have been devoted to exploiting deep neural networks in stock prediction. While long-range dependencies and chaotic property are still two major issues that lower the performance of state-of-the-art deep learning models in forecasting future price trends. In this study, we propose a novel framework to address both issues. Specifically, in terms of transforming time series into complex networks, we convert market price series into graphs. Then, structural information, referring to associations among temporal points and the node weights, is extracted from the mapped graphs to resolve the problems regarding long-range dependencies and the chaotic property. We take graph embeddings to represent the associations among temporal points as the prediction model inputs. Node weights are used as a priori knowledge to enhance the learning of temporal attention. The effectiveness of our proposed framework is validated using real-world stock data, and our approach obtains the best performance among several state-of-the-art benchmarks. Moreover, in the conducted trading simulations, our framework further obtains the highest cumulative profits. Our results supplement the existing applications of complex network methods in the financial realm and provide insightful implications for investment applications regarding decision support in financial markets.

Suggested Citation

  • Junran Wu & Ke Xu & Xueyuan Chen & Shangzhe Li & Jichang Zhao, 2021. "Price graphs: Utilizing the structural information of financial time series for stock prediction," Papers 2106.02522, arXiv.org, revised Nov 2021.
  • Handle: RePEc:arx:papers:2106.02522
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.02522
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ou, Jane A. & Penman, Stephen H., 1989. "Financial statement analysis and the prediction of stock returns," Journal of Accounting and Economics, Elsevier, vol. 11(4), pages 295-329, November.
    2. Yang, Yue & Wang, Jianbo & Yang, Huijie & Mang, Jingshi, 2009. "Visibility graph approach to exchange rate series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(20), pages 4431-4437.
    3. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    4. Jingyuan Wang & Yang Zhang & Ke Tang & Junjie Wu & Zhang Xiong, 2019. "AlphaStock: A Buying-Winners-and-Selling-Losers Investment Strategy using Interpretable Deep Reinforcement Attention Networks," Papers 1908.02646, arXiv.org.
    5. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    6. Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
    7. Wang, Na & Li, Dong & Wang, Qiwen, 2012. "Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6543-6555.
    8. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    9. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Om Mane & Saravanakumar kandasamy, 2022. "Stock Market Prediction using Natural Language Processing -- A Survey," Papers 2208.13564, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengli, Liu & Yongtu, Liang, 2019. "Exploring the temporal structure of time series data for hazardous liquid pipeline incidents based on complex network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    2. Sun, Mei & Wang, Yaqi & Gao, Cuixia, 2016. "Visibility graph network analysis of natural gas price: The case of North American market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1-11.
    3. Massimiliano Caporin, 2007. "Variance (Non) Causality in Multivariate GARCH," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 1-24.
    4. Hui Niu & Siyuan Li & Jian Li, 2022. "MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization," Papers 2210.01774, arXiv.org.
    5. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    6. Sainaghi, Ruggero & Baggio, Rodolfo, 2017. "Complexity traits and dynamics of tourism destinations," Tourism Management, Elsevier, vol. 63(C), pages 368-382.
    7. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    8. Yuecheng Huang & Wuyi Cheng & Sida Luo & Yun Luo & Chengchen Ma & Tailin He, 2016. "Features of the Asynchronous Correlation between the China Coal Price Index and Coal Mining Accidental Deaths," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-18, November.
    9. Chen, Shiyu & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2014. "A visibility graph averaging aggregation operator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 1-12.
    10. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    11. B. Senthil Arasu & Desti Kannaiah & Nancy Christina J. & Malik Shahzad Shabbir, 2021. "Selection of Variables in Data Envelopment Analysis for Evaluation of Stock Performance," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 46(3), pages 337-353, August.
    12. An, Haizhong & Gao, Xiangyun & Fang, Wei & Huang, Xuan & Ding, Yinghui, 2014. "The role of fluctuating modes of autocorrelation in crude oil prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 382-390.
    13. Alireza Namdari & Tariq S. Durrani, 2021. "A Multilayer Feedforward Perceptron Model in Neural Networks for Predicting Stock Market Short-term Trends," SN Operations Research Forum, Springer, vol. 2(3), pages 1-30, September.
    14. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    15. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    16. Pedersen, Rasmus Søndergaard, 2016. "Targeting Estimation Of Ccc-Garch Models With Infinite Fourth Moments," Econometric Theory, Cambridge University Press, vol. 32(2), pages 498-531, April.
    17. Ellul, Andrew & Holden, Craig W. & Jain, Pankaj & Jennings, Robert, 2007. "Order dynamics: Recent evidence from the NYSE," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 636-661, December.
    18. Guochang Wang & Wai Keung Li & Ke Zhu, 2018. "New HSIC-based tests for independence between two stationary multivariate time series," Papers 1804.09866, arXiv.org.
    19. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
    20. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.02522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.