IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3086-d1491000.html
   My bibliography  Save this article

On the Gradient Method in One Portfolio Management Problem

Author

Listed:
  • Suriya Kumacheva

    (Department of Economics, St. Petersburg State University, 199034 Saint-Petersburg, Russia)

  • Vitalii Novgorodtcev

    (Department of Applied Mathematics and Control Processes, St. Petersburg State University, 199034 Saint-Petersburg, Russia)

Abstract

This study refines the methodology for solving stochastic optimal control problems with quality criteria that include the sum of the quality functional of the classical formulation and an extremal measure. A two-level optimization solution of these kinds of problems is presented already for the case where the quality functional consists only of the extremal measure. Our study shows the possibility of solving the original time inconsistency problem through solving a two-level optimization problem, where the outer problem is solved by gradient methods since the value function is convex and the inner problem is solved by classical methods. Some experiments were carried out and confirmed the validity of the theory. The results of the study can be applied to the case of portfolio management with quality criteria containing the Conditional Value-at-Risk (CVaR) metric.

Suggested Citation

  • Suriya Kumacheva & Vitalii Novgorodtcev, 2024. "On the Gradient Method in One Portfolio Management Problem," Mathematics, MDPI, vol. 12(19), pages 1-14, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3086-:d:1491000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
    2. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    2. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    3. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2021. "Multi-Transformer: A New Neural Network-Based Architecture for Forecasting S&P Volatility," Papers 2109.12621, arXiv.org.
    4. Dirk Becherer & Klebert Kentia, 2017. "Hedging under generalized good-deal bounds and model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(1), pages 171-214, August.
    5. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    6. Eduardo Ramos-Pérez & Pablo J. Alonso-González & José Javier Núñez-Velázquez, 2021. "Multi-Transformer: A New Neural Network-Based Architecture for Forecasting S&P Volatility," Mathematics, MDPI, vol. 9(15), pages 1-18, July.
    7. Damien Ackerer & Damir Filipovic, 2017. "Option Pricing with Orthogonal Polynomial Expansions," Papers 1711.09193, arXiv.org, revised May 2019.
    8. Yu Feng, 2019. "Theory and Application of Model Risk Quantification," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2019, January-A.
    9. Yeda Cui & Lingfei Li & Gongqiu Zhang, 2024. "Pricing and hedging autocallable products by Markov chain approximation," Review of Derivatives Research, Springer, vol. 27(3), pages 259-303, October.
    10. Lesedi Mabitsela & Calisto Guambe & Rodwell Kufakunesu, 2018. "A note on representation of BSDE-based dynamic risk measures and dynamic capital allocations," Papers 1808.04611, arXiv.org.
    11. Milan Kumar Das & Anindya Goswami, 2019. "Testing of binary regime switching models using squeeze duration analysis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-20, March.
    12. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    13. Marcos Escobar-Anel & Weili Fan, 2023. "The SEV-SV Model—Applications in Portfolio Optimization," Risks, MDPI, vol. 11(2), pages 1-34, January.
    14. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    15. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    16. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    17. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    18. Lord, Roger & Fang, Fang & Bervoets, Frank & Oosterlee, Kees, 2007. "A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes," MPRA Paper 1952, University Library of Munich, Germany.
    19. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    20. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3086-:d:1491000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.