IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.09899.html
   My bibliography  Save this paper

Portfolio Optimization with Feedback Strategies Based on Artificial Neural Networks

Author

Listed:
  • Yaacov Kopeliovich
  • Michael Pokojovy

Abstract

With the recent advancements in machine learning (ML), artificial neural networks (ANN) are starting to play an increasingly important role in quantitative finance. Dynamic portfolio optimization is among many problems that have significantly benefited from a wider adoption of deep learning (DL). While most existing research has primarily focused on how DL can alleviate the curse of dimensionality when solving the Hamilton-Jacobi-Bellman (HJB) equation, some very recent developments propose to forego derivation and solution of HJB in favor of empirical utility maximization over dynamic allocation strategies expressed through ANN. In addition to being simple and transparent, this approach is universally applicable, as it is essentially agnostic about market dynamics. To showcase the method, we apply it to optimal portfolio allocation between a cash account and the S&P 500 index modeled using geometric Brownian motion or the Heston model. In both cases, the results are demonstrated to be on par with those under the theoretical optimal weights assuming isoelastic utility and real-time rebalancing. A set of R codes for a broad class of stochastic volatility models are provided as a supplement.

Suggested Citation

  • Yaacov Kopeliovich & Michael Pokojovy, 2024. "Portfolio Optimization with Feedback Strategies Based on Artificial Neural Networks," Papers 2411.09899, arXiv.org.
  • Handle: RePEc:arx:papers:2411.09899
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.09899
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    2. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    3. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    6. Anders Max Reppen & Halil Mete Soner, 2023. "Deep empirical risk minimization in finance: Looking into the future," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 116-145, January.
    7. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    8. Pieter M. van Staden & Peter A. Forsyth & Yuying Li, 2023. "A parsimonious neural network approach to solve portfolio optimization problems without using dynamic programming," Papers 2303.08968, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    2. Guohui Guan & Zongxia Liang & Yi Xia, 2024. "Many-insurer robust games of reinsurance and investment under model uncertainty in incomplete markets," Papers 2412.09157, arXiv.org.
    3. Simon Ellersgaard & Martin Tegnér, 2018. "Stochastic volatility for utility maximizers — A martingale approach," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-39, March.
    4. Matthew Lorig, 2014. "Indifference prices and implied volatilities," Papers 1412.5520, arXiv.org, revised Sep 2015.
    5. M. Escobar-Anel & M. Kschonnek & R. Zagst, 2023. "Mind the cap!—constrained portfolio optimisation in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 23(12), pages 1793-1813, November.
    6. Yumo Zhang, 2023. "Utility maximization in a stochastic affine interest rate and CIR risk premium framework: a BSDE approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 97-128, June.
    7. Jan Kallsen & Johannes Muhle-Karbe, 2009. "Utility maximization in models with conditionally independent increments," Papers 0911.3608, arXiv.org.
    8. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    9. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    10. Marcos Escobar-Anel & Ben Spies & Rudi Zagst, 2024. "Optimal consumption and investment in general affine GARCH models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 987-1026, September.
    11. Escobar-Anel, Marcos & Gollart, Maximilian & Zagst, Rudi, 2022. "Closed-form portfolio optimization under GARCH models," Operations Research Perspectives, Elsevier, vol. 9(C).
    12. Marcos Escobar-Anel & Harold A. Moreno-Franco, 2019. "Dynamic portfolio strategies under a fully correlated jump-diffusion process," Annals of Finance, Springer, vol. 15(3), pages 421-453, September.
    13. Cheng, Yuyang & Escobar-Anel, Marcos, 2023. "A class of portfolio optimization solvable problems," Finance Research Letters, Elsevier, vol. 52(C).
    14. Simon Ellersgaard, 2019. "On the Numerical Solution of Mertonian Control Problems: A Survey of the Markov Chain Approximation Method for the Working Economist," Computational Economics, Springer;Society for Computational Economics, vol. 54(3), pages 1179-1211, October.
    15. Yichen Zhu & Marcos Escobar-Anel & Matt Davison, 2023. "A Polynomial-Affine Approximation for Dynamic Portfolio Choice," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1177-1213, October.
    16. Yichen Zhu & Marcos Escobar-Anel, 2021. "A Neural Network Monte Carlo Approximation for Expected Utility Theory," JRFM, MDPI, vol. 14(7), pages 1-18, July.
    17. Elena Boguslavskaya & Dmitry Muravey, 2015. "An explicit solution for optimal investment in Heston model," Papers 1505.02431, arXiv.org, revised May 2015.
    18. Marcellino Gaudenzi & Michel Vellekoop, 2018. "Exact Solutions for Optimal Investment Strategies and Indifference Prices under Non-Differentiable Preferences," Papers 1809.11010, arXiv.org.
    19. Marius Ascheberg & Nicole Branger & Holger Kraft & Frank Thomas Seifried, 2016. "When do jumps matter for portfolio optimization?," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1297-1311, August.
    20. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.09899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.