IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.12892.html
   My bibliography  Save this paper

A new encoding of implied volatility surfaces for their synthetic generation

Author

Listed:
  • Zheng Gong
  • Wojciech Frys
  • Renzo Tiranti
  • Carmine Ventre
  • John O'Hara
  • Yingbo Bai

Abstract

In financial terms, an implied volatility surface can be described by its term structure, its skewness and its overall volatility level. We use a PCA variational auto-encoder model to perfectly represent these descriptors into a latent space of three dimensions. Our new encoding brings significant benefits for synthetic surface generation, in that (i) scenario generation is more interpretable; (ii) volatility extrapolation achieve better accuracy; and, (iii) we propose a solution to infer implied volatility surfaces of a stock from an index to which it belongs directly by modelling their relationship on the latent space of the encoding. All these applications, and the latter in particular, have the potential to improve risk management of financial derivatives whenever data is scarce.

Suggested Citation

  • Zheng Gong & Wojciech Frys & Renzo Tiranti & Carmine Ventre & John O'Hara & Yingbo Bai, 2022. "A new encoding of implied volatility surfaces for their synthetic generation," Papers 2211.12892, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2211.12892
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.12892
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    2. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Jay Cao & Jacky Chen & John Hull, 2020. "A neural network approach to understanding implied volatility movements," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1405-1413, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    2. Xun Li & Ping Lin & Xue-Cheng Tai & Jinghui Zhou, 2015. "Pricing Two-asset Options under Exponential L\'evy Model Using a Finite Element Method," Papers 1511.04950, arXiv.org.
    3. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    4. Carl Chiarella & Andrew Ziogas, 2009. "American Call Options Under Jump-Diffusion Processes - A Fourier Transform Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 37-79.
    5. Ulze, Markus & Stadler, Johannes & Rathgeber, Andreas W., 2021. "No country for old distributions? On the comparison of implied option parameters between the Brownian motion and variance gamma process," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 163-184.
    6. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    7. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    8. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    9. Leila Khodayari & Mojtaba Ranjbar, 2017. "A Numerical Method to Approximate Multi-Asset Option Pricing Under Exponential Lévy Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 189-205, August.
    10. Tim Leung & Marco Santoli, 2014. "Accounting for earnings announcements in the pricing of equity options," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-46.
    11. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    12. Yingzi Chen & Wansheng Wang & Aiguo Xiao, 2019. "An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1565-1591, April.
    13. Alexander Lipton & Andrey Gal & Andris Lasis, 2013. "Pricing of vanilla and first generation exotic options in the local stochastic volatility framework: survey and new results," Papers 1312.5693, arXiv.org.
    14. H. A. Windcliff & P. A. Forsyth & K. R. Vetzal, 2006. "Numerical Methods and Volatility Models for Valuing Cliquet Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(4), pages 353-386.
    15. Sebastiano Vitali & Miloš Kopa & Gabriele Giana, 2023. "Implied volatility smoothing at COVID-19 times," Computational Management Science, Springer, vol. 20(1), pages 1-42, December.
    16. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    17. Xia, Kun & Yang, Xuewei & Zhu, Peng, 2023. "Delta hedging and volatility-price elasticity: A two-step approach," Journal of Banking & Finance, Elsevier, vol. 153(C).
    18. Stefano Galluccio & Yann Le Cam, 2005. "Implied Calibration of Stochastic Volatility Jump Diffusion Models," Finance 0510028, University Library of Munich, Germany.
    19. Chen, Wen & Wang, Song, 2017. "A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 174-187.
    20. Ke Nian & Thomas F. Coleman & Yuying Li, 2018. "Learning minimum variance discrete hedging directly from the market," Quantitative Finance, Taylor & Francis Journals, vol. 18(7), pages 1115-1128, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.12892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.