IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v12y2009i03ns0219024909005270.html
   My bibliography  Save this article

The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines

Author

Listed:
  • CARL CHIARELLA

    (School of Finance and Economics, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia)

  • BODA KANG

    (School of Finance and Economics, University of Technology, Sydney, Australia)

  • GUNTER H. MEYER

    (School of Mathematics, Georgia Institute of Technology, Atlanta, USA)

  • ANDREW ZIOGAS

    (Integral Energy, Australia)

Abstract

This paper considers the problem of numerically evaluating American option prices when the dynamics of the underlying are driven by both stochastic volatility following the square root process of Heston [18], and by a Poisson jump process of the type originally introduced by Merton [25]. We develop a method of lines algorithm to evaluate the price as well as the delta and gamma of the option, thereby extending the method developed by Meyer [26] for the case of jump-diffusion dynamics. The accuracy of the method is tested against two numerical methods that directly solve the integro-partial differential pricing equation. The first is an extension to the jump-diffusion situation of the componentwise splitting method of Ikonen and Toivanen [21]. The second method is a Crank-Nicolson scheme that is solved using projected successive over relaxation and which is taken as the benchmark for the price. The relative efficiency of these methods for computing the American call option price, delta, gamma and free boundary is analysed. If one seeks an algorithm that gives not only the price but also the delta and gamma to the same level of accuracy for a given computational effort then the method of lines seems to perform best amongst the methods considered.

Suggested Citation

  • Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
  • Handle: RePEc:wsi:ijtafx:v:12:y:2009:i:03:n:s0219024909005270
    DOI: 10.1142/S0219024909005270
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024909005270
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024909005270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carl Chiarella & Andrew Ziogas, 2009. "American Call Options Under Jump-Diffusion Processes - A Fourier Transform Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 37-79.
    2. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    3. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    4. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Amin, Kaushik I, 1993. "Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-1863, December.
    7. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    8. Thomas Adolfsson & Carl Chiarella & Andrew Ziogas & Jonathan Ziveyi, 2013. "Representation and Numerical Approximation of American Option Prices under Heston Stochastic Volatility Dynamics," Research Paper Series 327, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    11. Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Louis O. Scott, 1997. "Pricing Stock Options in a Jump‐Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 413-426, October.
    14. Elias Tzavalis & Shijun Wang, 2003. "Pricing American Options under Stochastic Volatility: A New Method Using Chebyshev Polynomials to Approximate the Early Exercise Boundary," Working Papers 488, Queen Mary University of London, School of Economics and Finance.
    15. Samuli Ikonen & Jari Toivanen, 2007. "Componentwise Splitting Methods For Pricing American Options Under Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 331-361.
    16. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Li & Ping Lin & Xue-Cheng Tai & Jinghui Zhou, 2015. "Pricing Two-asset Options under Exponential L\'evy Model Using a Finite Element Method," Papers 1511.04950, arXiv.org.
    2. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Gerald Cheang & Carl Chiarella & Andrew Ziogas, 2009. "An Analysis of American Options Under Heston Stochastic Volatility and Jump-Diffusion Dynamics," Research Paper Series 256, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    5. Karel in 't Hout & Jari Toivanen, 2015. "Application of Operator Splitting Methods in Finance," Papers 1504.01022, arXiv.org.
    6. Carl Chiarella & Andrew Ziogas, 2009. "American Call Options Under Jump-Diffusion Processes - A Fourier Transform Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 37-79.
    7. Kuldip Singh Patel & Mani Mehra, 2018. "Fourth-Order Compact Scheme For Option Pricing Under The Merton’S And Kou’S Jump-Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-26, June.
    8. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    9. Belssing Taruvinga, 2019. "Solving Selected Problems on American Option Pricing with the Method of Lines," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2019, January-A.
    10. Kuldip Singh Patel & Mani Mehra, 2018. "Fourth order compact scheme for option pricing under Merton and Kou jump-diffusion models," Papers 1804.07534, arXiv.org.
    11. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    12. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    13. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    14. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    15. Jamal Amani Rad & Kourosh Parand, 2014. "Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method," Papers 1412.6064, arXiv.org.
    16. Christara, Christina C. & Leung, Nat Chun-Ho, 2016. "Option pricing in jump diffusion models with quadratic spline collocation," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 28-42.
    17. Yingzi Chen & Wansheng Wang & Aiguo Xiao, 2019. "An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1565-1591, April.
    18. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    19. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    20. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.

    More about this item

    Keywords

    American options; stochastic volatility; jump-diffusion processes; Volterra integral equations; free boundary problem; method of lines;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:12:y:2009:i:03:n:s0219024909005270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.