IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v53y2019i4d10.1007_s10614-018-9823-8.html
   My bibliography  Save this article

An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids

Author

Listed:
  • Yingzi Chen

    (Changsha University of Science & Technology
    Xiangtan University)

  • Wansheng Wang

    (Changsha University of Science & Technology
    Shanghai Normal University)

  • Aiguo Xiao

    (Xiangtan University)

Abstract

In this paper, we consider the fast numerical valuation of European and American options under Merton’s jump-diffusion model, which is given by a partial integro-differential equations. Due to the singularities and discontinuities of the model, the time-space grids are nonuniform with refinement near the strike price and expiry. On such nonuniform grids, the spatial differential operators are discretized by finite difference methods, and time stepping is performed using the discontinuous Galerkin finite element method. Owing to the nonuniform grids, algebraic multigrid method is used for solving the dense algebraical system resulting from the discretization of the integral term associated with jumps in models, which is more challenging. Numerical comparison of algebraic multigrid, the generalized minimal residual method, and the incomplete LU preconditioner shows that algebraic multigrid method is superior to and more effective than the other two methods in solving such dense algebraical system.

Suggested Citation

  • Yingzi Chen & Wansheng Wang & Aiguo Xiao, 2019. "An Efficient Algorithm for Options Under Merton’s Jump-Diffusion Model on Nonuniform Grids," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1565-1591, April.
  • Handle: RePEc:kap:compec:v:53:y:2019:i:4:d:10.1007_s10614-018-9823-8
    DOI: 10.1007/s10614-018-9823-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-018-9823-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-018-9823-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    3. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Tai-Ho Wang, 2015. "Nonlinear Option Pricing," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 19-21, January.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    8. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    9. Rama Cont & Ekaterina Voltchkova, 2005. "A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models," Post-Print halshs-00445645, HAL.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    12. Xiao Lan Zhang, 1997. "Numerical Analysis of American Option Pricing in a Jump-Diffusion Model," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 668-690, August.
    13. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Jisang & Park, Eunchae & Kim, Sangkwon & Lee, Wonjin & Lee, Chaeyoung & Yoon, Sungha & Park, Jintae & Kim, Junseok, 2021. "Optimal non-uniform finite difference grids for the Black–Scholes equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 690-704.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xun Li & Ping Lin & Xue-Cheng Tai & Jinghui Zhou, 2015. "Pricing Two-asset Options under Exponential L\'evy Model Using a Finite Element Method," Papers 1511.04950, arXiv.org.
    2. Kuldip Singh Patel & Mani Mehra, 2018. "Fourth order compact scheme for option pricing under Merton and Kou jump-diffusion models," Papers 1804.07534, arXiv.org.
    3. Kuldip Singh Patel & Mani Mehra, 2018. "Fourth-Order Compact Scheme For Option Pricing Under The Merton’S And Kou’S Jump-Diffusion Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-26, June.
    4. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    5. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2016. "Numerical stability of a hybrid method for pricing options," Papers 1603.07225, arXiv.org, revised Dec 2019.
    6. Karel in 't Hout & Jari Toivanen, 2015. "Application of Operator Splitting Methods in Finance," Papers 1504.01022, arXiv.org.
    7. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    10. Carl Chiarella & Andrew Ziogas, 2009. "American Call Options Under Jump-Diffusion Processes - A Fourier Transform Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(1), pages 37-79.
    11. Liming Feng & Vadim Linetsky, 2008. "Pricing Options in Jump-Diffusion Models: An Extrapolation Approach," Operations Research, INFORMS, vol. 56(2), pages 304-325, April.
    12. Maya Briani & Lucia Caramellino & Giulia Terenzi & Antonino Zanette, 2019. "Numerical Stability Of A Hybrid Method For Pricing Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-46, November.
    13. Zafar Ahmad & Reilly Browne & Rezaul Chowdhury & Rathish Das & Yushen Huang & Yimin Zhu, 2023. "Fast American Option Pricing using Nonlinear Stencils," Papers 2303.02317, arXiv.org, revised Oct 2023.
    14. Tim Leung & Marco Santoli, 2014. "Accounting for earnings announcements in the pricing of equity options," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-46.
    15. Hamidreza Maleki Almani & Foad Shokrollahi & Tommi Sottinen, 2024. "Hedging in Jump Diffusion Model with Transaction Costs," Papers 2408.10785, arXiv.org.
    16. Fabi'an Crocce & Juho Happola & Jonas Kiessling & Ra'ul Tempone, 2015. "Error analysis in Fourier methods for option pricing," Papers 1503.00019, arXiv.org, revised Nov 2015.
    17. Nicola Cantarutti & Jo~ao Guerra & Manuel Guerra & Maria do Ros'ario Grossinho, 2016. "Option pricing in exponential L\'evy models with transaction costs," Papers 1611.00389, arXiv.org, revised Nov 2019.
    18. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    19. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    20. Yulian Fan & Huadong Zhang, 2017. "The pricing of average options with jump diffusion processes in the uncertain volatility model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:53:y:2019:i:4:d:10.1007_s10614-018-9823-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.