IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.02098.html
   My bibliography  Save this paper

The Econometrics of Financial Duration Modeling

Author

Listed:
  • Giuseppe Cavaliere
  • Thomas Mikosch
  • Anders Rahbek
  • Frederik Vilandt

Abstract

We establish new results for estimation and inference in financial durations models, where events are observed over a given time span, such as a trading day, or a week. For the classical autoregressive conditional duration (ACD) models by Engle and Russell (1998, Econometrica 66, 1127-1162), we show that the large sample behavior of likelihood estimators is highly sensitive to the tail behavior of the financial durations. In particular, even under stationarity, asymptotic normality breaks down for tail indices smaller than one or, equivalently, when the clustering behaviour of the observed events is such that the unconditional distribution of the durations has no finite mean. Instead, we find that estimators are mixed Gaussian and have non-standard rates of convergence. The results are based on exploiting the crucial fact that for duration data the number of observations within any given time span is random. Our results apply to general econometric models where the number of observed events is random.

Suggested Citation

  • Giuseppe Cavaliere & Thomas Mikosch & Anders Rahbek & Frederik Vilandt, 2022. "The Econometrics of Financial Duration Modeling," Papers 2208.02098, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2208.02098
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.02098
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kristensen, Dennis & Rahbek, Anders, 2010. "Likelihood-based inference for cointegration with nonlinear error-correction," Journal of Econometrics, Elsevier, vol. 158(1), pages 78-94, September.
    2. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    3. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    4. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    5. James D. Hamilton & Oscar Jorda, 2002. "A Model of the Federal Funds Rate Target," Journal of Political Economy, University of Chicago Press, vol. 110(5), pages 1135-1167, October.
    6. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    7. Søren Tolver Jensen & Anders Rahbek, 2004. "Asymptotic Normality of the QMLE Estimator of ARCH in the Nonstationary Case," Econometrica, Econometric Society, vol. 72(2), pages 641-646, March.
    8. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    9. Matteo Aquilina & Eric Budish & Peter O’Neill, 2022. "Quantifying the High-Frequency Trading “Arms Race”," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(1), pages 493-564.
    10. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    11. Nikolaus Hautsch, 2012. "Econometrics of Financial High-Frequency Data," Springer Books, Springer, number 978-3-642-21925-2, April.
    12. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    13. Chor-Yiu Sin, 2014. "Qmle Of A Standard Exponential Acd Model: Asymptotic Distribution And Residual Correlation," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 9(02), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Cavaliere & Thomas Mikosch & Anders Rahbek & Frederik Vilandt, 2023. "Asymptotics for the Generalized Autoregressive Conditional Duration Model," Papers 2307.01779, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavaliere, Giuseppe & Mikosch, Thomas & Rahbek, Anders & Vilandt, Frederik, 2024. "Tail behavior of ACD models and consequences for likelihood-based estimation," Journal of Econometrics, Elsevier, vol. 238(2).
    2. Yiing Fei Tan & Kok Haur Ng & You Beng Koh & Shelton Peiris, 2022. "Modelling Trade Durations Using Dynamic Logarithmic Component ACD Model with Extended Generalised Inverse Gaussian Distribution," Mathematics, MDPI, vol. 10(10), pages 1-20, May.
    3. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.
    4. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    5. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    6. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    7. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
    8. Yuanhua Feng & Sarah Forstinger & Christian Peitz, 2013. "On the iterative plug-in algorithm for estimating diurnal patterns of financial trade durations," Working Papers CIE 66, Paderborn University, CIE Center for International Economics.
    9. Vasileios Siakoulis & Ioannis Venetis, 2015. "On inter-arrival times of bond market extreme events. An application to seven European markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(4), pages 717-741, October.
    10. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    11. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    12. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2012. "Forecasting spikes in electricity prices," International Journal of Forecasting, Elsevier, vol. 28(2), pages 400-411.
    13. Siakoulis, Vasilios, 2015. "Modeling bank default intensity in the USA using autoregressive duration models," MPRA Paper 64526, University Library of Munich, Germany.
    14. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    15. BAUWENS, Luc & HAUTSCH, Nikolaus, 2003. "Dynamic latent factor models for intensity processes," LIDAM Discussion Papers CORE 2003103, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    17. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    18. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    20. Yang, Joey Wenling, 2011. "Transaction duration and asymmetric price impact of trades--Evidence from Australia," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 91-102, January.
    21. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    22. repec:wyi:journl:002120 is not listed on IDEAS
    23. Wing Lon Ng, 2010. "Dynamic Order Submission And Herding Behavior In Electronic Trading," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(1), pages 27-43, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.02098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.