In sickness and in health, until death do us part: A case for theory
Author
Abstract
Suggested Citation
DOI: 10.1002/soej.12474
Download full text from publisher
References listed on IDEAS
- Claudia R. Sahm, 2012. "How Much Does Risk Tolerance Change?," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-38.
- Donna Gilleskie & Denise Hoffman, 2014.
"Health Capital and Human Capital as Explanations for Health-Related Wage Disparities,"
Journal of Human Capital, University of Chicago Press, vol. 8(3), pages 235-279.
- Donna Gilleskie & Denise Hoffman, "undated". "Health Capital and Human Capital as Explanations for Health-Related Wage Disparities," Mathematica Policy Research Reports 864ed21a899646aabf02f584b, Mathematica Policy Research.
- Christopher J. Cronin, 2019. "Insurance‐Induced Moral Hazard: A Dynamic Model Of Within‐Year Medical Care Decision Making Under Uncertainty," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 60(1), pages 187-218, February.
- Matthew C. Harris, 2019.
"The Impact Of Body Weight On Occupational Mobility And Career Development,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 60(2), pages 631-660, May.
- Harris, Matthew, 2015. "The impact of body weight on occupational mobility and career development," MPRA Paper 61924, University Library of Munich, Germany.
- Michael Darden, 2017.
"Smoking, Expectations, and Health: A Dynamic Stochastic Model of Lifetime Smoking Behavior,"
Journal of Political Economy, University of Chicago Press, vol. 125(5), pages 1465-1522.
- Michael Darden, 2012. "Smoking, Expectations, and Health: A Dynamic Stochastic Model of Lifetime Smoking Behavior," Working Papers 1204, Tulane University, Department of Economics.
- Donna B. Gilleskie, 1998. "A Dynamic Stochastic Model of Medical Care Use and Work Absence," Econometrica, Econometric Society, vol. 66(1), pages 1-46, January.
- Donna Gilleskie & Euna Han & Edward Norton, 2017.
"Disentangling the Contemporaneous and Dynamic Effects of Human and Health Capital on Wages over the Life Cycle,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 25, pages 350-383, April.
- Donna B. Gilleskie & Euna Han & Edward C. Norton, 2016. "Disentangling the Contemporaneous and Dynamic Effects of Human and Health Capital on Wages over the Life Cycle," NBER Working Papers 22430, National Bureau of Economic Research, Inc.
- Donna Gilleskie & Euna Han & Edward Norton, 2017. "Code and data files for "Disentangling the Contemporaneous and Dynamic Effects of Human and Health Capital on Wages over the Life Cycle"," Computer Codes 16-98, Review of Economic Dynamics.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Yang Wang, 2014. "Dynamic Implications of Subjective Expectations: Evidence from Adult Smokers," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 1-37, January.
- Liran Einav & Amy Finkelstein & Iuliana Pascu & Mark R. Cullen, 2012.
"How General Are Risk Preferences? Choices under Uncertainty in Different Domains,"
American Economic Review, American Economic Association, vol. 102(6), pages 2606-2638, October.
- Mark Cullen & Liran Einav & Amy Finkelstein & Iuliana Pascu, 2010. "How General Are Risk Preferences? Choices Under Uncertainty in Different Domains," Discussion Papers 09-005, Stanford Institute for Economic Policy Research.
- Liran Einav & Amy Finkelstein & Iuliana Pascu & Mark R. Cullen, 2010. "How general are risk preferences? Choices under uncertainty in different domains," NBER Working Papers 15686, National Bureau of Economic Research, Inc.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Betty Tao Fout & Donna B. Gilleskie, 2015.
"Does Health Insurance Encourage or Crowd Out Beneficial Nonmedical Care? A Dynamic Analysis of Insurance, Health Inputs, and Health Production,"
American Journal of Health Economics, MIT Press, vol. 1(2), pages 125-164, Spring.
- Betty Tao Fout & Donna B. Gilleskie, 2015. "Does Health Insurance Encourage or Crowd Out Beneficial Nonmedical Care? A Dynamic Analysis of Insurance, Health Inputs, and Health Production," American Journal of Health Economics, University of Chicago Press, vol. 1(2), pages 125-164, Spring.
- Grossman, Michael, 1972. "On the Concept of Health Capital and the Demand for Health," Journal of Political Economy, University of Chicago Press, vol. 80(2), pages 223-255, March-Apr.
- Matthew C. Harris & Jennifer L. Kohn, 2018. "Reference Health and the Demand for Medical Care," Economic Journal, Royal Economic Society, vol. 128(615), pages 2812-2842, November.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amitabh Chandra & Courtney Coile & Corina Mommaerts, 2023.
"What Can Economics Say about Alzheimer's Disease?,"
Journal of Economic Literature, American Economic Association, vol. 61(2), pages 428-470, June.
- Amitabh Chandra & Courtney Coile & Corina Mommaerts, 2020. "What Can Economics Say About Alzheimer's Disease?," NBER Working Papers 27760, National Bureau of Economic Research, Inc.
- Marcela PARADA‐CONTZEN, 2023. "Gender, family status and health characteristics: Understanding retirement inequalities in the Chilean pension model," International Labour Review, International Labour Organization, vol. 162(2), pages 271-303, June.
- Barton Hamilton & Andrés Hincapié & Emma C. Kalish & Nicholas W. Papageorge, 2021.
"Medical Innovation and Health Disparities,"
NBER Working Papers
28864, National Bureau of Economic Research, Inc.
- Hamilton, Barton H. & Hincapié, Andrés & Kalish, Emma C. & Papageorge, Nicholas W., 2022. "Medical Innovation and Health Disparities," IZA Discussion Papers 15711, Institute of Labor Economics (IZA).
- Tsang, Andrew, 2021.
"Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy,"
MPRA Paper
110703, University Library of Munich, Germany.
- Tsang, Andrew, 2021. "Uncovering Heterogeneous Regional Impacts of Chinese Monetary Policy," WiSo-HH Working Paper Series 62, University of Hamburg, Faculty of Business, Economics and Social Sciences, WISO Research Laboratory.
- Blankenship, Brian & Aklin, Michaël & Urpelainen, Johannes & Nandan, Vagisha, 2022. "Jobs for a just transition: Evidence on coal job preferences from India," Energy Policy, Elsevier, vol. 165(C).
- Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
- Askitas, Nikos, 2024.
"A Hands-on Machine Learning Primer for Social Scientists: Math, Algorithms and Code,"
IZA Discussion Papers
17014, Institute of Labor Economics (IZA).
- Nikos Askitas & Nikolaos Askitas, 2024. "A Hands-On Machine Learning Primer for Social Scientists: Math, Algorithms and Code," CESifo Working Paper Series 11353, CESifo.
- Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
- Mona Aghdaee & Bonny Parkinson & Kompal Sinha & Yuanyuan Gu & Rajan Sharma & Emma Olin & Henry Cutler, 2022. "An examination of machine learning to map non‐preference based patient reported outcome measures to health state utility values," Health Economics, John Wiley & Sons, Ltd., vol. 31(8), pages 1525-1557, August.
- Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
- Marcela Parada-Contzen, 2020. "Crowding-out in savings decisions, portfolio default adoption and home ownership: evidence from the Chilean retirement system," Review of Economics of the Household, Springer, vol. 18(2), pages 543-569, June.
- Mehmet Güney Celbiş & Pui-Hang Wong & Karima Kourtit & Peter Nijkamp, 2021. "Innovativeness, Work Flexibility, and Place Characteristics: A Spatial Econometric and Machine Learning Approach," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2023.
"Micro-geographic property price and rent indices,"
Regional Science and Urban Economics, Elsevier, vol. 98(C).
- Gabriel Ahlfeldt & Stephan Heblich & Tobias Seidel, 2021. "Micro-Geographic Property Price and Rent Indices," CESifo Working Paper Series 9187, CESifo.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2021. "Micro-geographic property price and rent indices," LSE Research Online Documents on Economics 113922, London School of Economics and Political Science, LSE Library.
- Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2023. "Micro-geographic property price and rent indices," LSE Research Online Documents on Economics 116649, London School of Economics and Political Science, LSE Library.
- Gabriel M. Ahlfeldt & Stephan Heblich & Tobias Seidel, 2021. "Micro-geographic property price and rent indices," CEP Discussion Papers dp1782, Centre for Economic Performance, LSE.
- Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720, arXiv.org, revised Jan 2024.
- Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021.
"Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements,"
Policy Research Working Paper Series
9838, The World Bank.
- Dang, Hai-Anh H. & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2025. "Poverty imputation in contexts without consumption data: a revisit with further refinements," LSE Research Online Documents on Economics 125798, London School of Economics and Political Science, LSE Library.
- Dang, Hai-Anh H & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2023. "Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements," IZA Discussion Papers 15873, Institute of Labor Economics (IZA).
- Dang, Hai-Anh H. & Kilic, Talip & Abanokova, Kseniya & Carletto, Calogero, 2023. "Poverty Imputation in Contexts without Consumption Data: A Revisit with Further Refinements," GLO Discussion Paper Series 1226, Global Labor Organization (GLO).
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2022.
"Multiway Cluster Robust Double/Debiased Machine Learning,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1046-1056, June.
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2019. "Multiway Cluster Robust Double/Debiased Machine Learning," Papers 1909.03489, arXiv.org, revised Mar 2020.
- Dario Sansone & Anna Zhu, 2023.
"Using Machine Learning to Create an Early Warning System for Welfare Recipients,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(5), pages 959-992, October.
- Dario Sansone & Anna Zhu, 2020. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Papers 2011.12057, arXiv.org, revised May 2021.
- Sansone, Dario & Zhu, Anna, 2021. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," IZA Discussion Papers 14377, Institute of Labor Economics (IZA).
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Yongtong Shao & Tao Xiong & Minghao Li & Dermot Hayes & Wendong Zhang & Wei Xie, 2021.
"China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach,"
American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1082-1098, May.
- Shao, Yongtong & Xiong, Tao & Li, Minghao & Hayes, Dermot & Zhang, Wendong & Xie, Wei, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," ISU General Staff Papers 202001010800001619, Iowa State University, Department of Economics.
- Yongtong Shao & Minghao Li & Dermot J. Hayes & Wendong Zhang & Tao Xiong & Wei Xie, 2020. "China's Missing Pigs: Correcting China's Hog Inventory Data Using a Machine Learning Approach," Center for Agricultural and Rural Development (CARD) Publications 20-wp607, Center for Agricultural and Rural Development (CARD) at Iowa State University.
- Falco J. Bargagli Stoffi & Kenneth De Beckker & Joana E. Maldonado & Kristof De Witte, 2021. "Assessing Sensitivity of Machine Learning Predictions.A Novel Toolbox with an Application to Financial Literacy," Papers 2102.04382, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:soecon:v:87:y:2021:i:3:p:753-768. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2325-8012 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.