IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.09815.html
   My bibliography  Save this paper

Differential learning methods for solving fully nonlinear PDEs

Author

Listed:
  • William Lefebvre
  • Gr'egoire Loeper
  • Huy^en Pham

Abstract

We propose machine learning methods for solving fully nonlinear partial differential equations (PDEs) with convex Hamiltonian. Our algorithms are conducted in two steps. First the PDE is rewritten in its dual stochastic control representation form, and the corresponding optimal feedback control is estimated using a neural network. Next, three different methods are presented to approximate the associated value function, i.e., the solution of the initial PDE, on the entire space-time domain of interest. The proposed deep learning algorithms rely on various loss functions obtained either from regression or pathwise versions of the martingale representation and its differential relation, and compute simultaneously the solution and its derivatives. Compared to existing methods, the addition of a differential loss function associated to the gradient, and augmented training sets with Malliavin derivatives of the forward process, yields a better estimation of the PDE's solution derivatives, in particular of the second derivative, which is usually difficult to approximate. Furthermore, we leverage our methods to design algorithms for solving families of PDEs when varying terminal condition (e.g. option payoff in the context of mathematical finance) by means of the class of DeepOnet neural networks aiming to approximate functional operators. Numerical tests illustrate the accuracy of our methods on the resolution of a fully nonlinear PDE associated to the pricing of options with linear market impact, and on the Merton portfolio selection problem.

Suggested Citation

  • William Lefebvre & Gr'egoire Loeper & Huy^en Pham, 2022. "Differential learning methods for solving fully nonlinear PDEs," Papers 2205.09815, arXiv.org.
  • Handle: RePEc:arx:papers:2205.09815
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.09815
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
    3. Huyên Pham & Xavier Warin & Maximilien Germain, 2021. "Neural networks-based backward scheme for fully nonlinear PDEs," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-24, February.
    4. Kathrin Glau & Linus Wunderlich, 2020. "The Deep Parametric PDE Method: Application to Option Pricing," Papers 2012.06211, arXiv.org.
    5. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance," Papers 2101.08068, arXiv.org, revised Apr 2021.
    6. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Working Papers hal-03115503, HAL.
    7. Potters, Marc & Bouchaud, Jean-Philippe & Sestovic, Dragan, 2001. "Hedged Monte-Carlo: low variance derivative pricing with objective probabilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 517-525.
    8. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    9. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    10. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang Yu Nguwi & Nicolas Privault, 2023. "A deep learning approach to the probabilistic numerical solution of path-dependent partial differential equations," Partial Differential Equations and Applications, Springer, vol. 4(4), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Lefebvre & Grégoire Loeper & Huyên Pham, 2023. "Differential learning methods for solving fully nonlinear PDEs," Digital Finance, Springer, vol. 5(1), pages 183-229, March.
    2. Antoine Jacquier & Zan Zuric, 2023. "Random neural networks for rough volatility," Papers 2305.01035, arXiv.org.
    3. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    4. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    5. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    6. Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
    7. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    8. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    9. Alexandre Roch, 2023. "Optimal Liquidation Through a Limit Order Book: A Neural Network and Simulation Approach," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
    10. Lukas Gonon, 2021. "Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality," Papers 2106.08900, arXiv.org.
    11. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    12. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    13. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
    14. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.
    15. Ankirchner, Stefan & Schneider, Judith C. & Schweizer, Nikolaus, 2014. "Cross-hedging minimum return guarantees: Basis and liquidity risks," Journal of Economic Dynamics and Control, Elsevier, vol. 41(C), pages 93-109.
    16. Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    17. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2022. "Deep learning and American options via free boundary framework," Papers 2211.11803, arXiv.org, revised Dec 2022.
    18. Ren'e Carmona & Mathieu Lauri`ere, 2021. "Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance," Papers 2107.04568, arXiv.org.
    19. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Neural Optimal Stopping Boundary," Papers 2205.04595, arXiv.org, revised May 2023.
    20. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2024. "Deep Learning and American Options via Free Boundary Framework," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 979-1022, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.09815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.