IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2020i1p46-d469210.html
   My bibliography  Save this article

Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks

Author

Listed:
  • Beatriz Salvador

    (Department of Mathematics, Campus de Elviña, University of A Coruña, 15071 A Coruña, Spain)

  • Cornelis W. Oosterlee

    (CWI—Centrum Wiskunde & Informatica, 1098 Amsterdam, The Netherlands
    DIAM, Delft University of Technology, 2628 Delft, The Netherlands)

  • Remco van der Meer

    (CWI—Centrum Wiskunde & Informatica, 1098 Amsterdam, The Netherlands
    DIAM, Delft University of Technology, 2628 Delft, The Netherlands)

Abstract

Artificial neural networks (ANNs) have recently also been applied to solve partial differential equations (PDEs). The classical problem of pricing European and American financial options, based on the corresponding PDE formulations, is studied here. Instead of using numerical techniques based on finite element or difference methods, we address the problem using ANNs in the context of unsupervised learning. As a result, the ANN learns the option values for all possible underlying stock values at future time points, based on the minimization of a suitable loss function. For the European option, we solve the linear Black–Scholes equation, whereas for the American option we solve the linear complementarity problem formulation. Two-asset exotic option values are also computed, since ANNs enable the accurate valuation of high-dimensional options. The resulting errors of the ANN approach are assessed by comparing to the analytic option values or to numerical reference solutions (for American options, computed by finite elements). In the short note, previously published, a brief introduction to this work was given, where some ideas to price vanilla options by ANNs were presented, and only European options were addressed. In the current work, the methodology is introduced in much more detail.

Suggested Citation

  • Beatriz Salvador & Cornelis W. Oosterlee & Remco van der Meer, 2020. "Financial Option Valuation by Unsupervised Learning with Artificial Neural Networks," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2020:i:1:p:46-:d:469210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/1/46/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/1/46/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Henrik Amilon, 2003. "A neural network versus Black-Scholes: a comparison of pricing and hedging performances," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 317-335.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Stulz, ReneM., 1982. "Options on the minimum or the maximum of two risky assets : Analysis and applications," Journal of Financial Economics, Elsevier, vol. 10(2), pages 161-185, July.
    4. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 277-283, September.
    5. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2019. "Pricing and hedging American-style options with deep learning," Papers 1912.11060, arXiv.org, revised Jul 2020.
    6. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    7. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    8. Arregui, Iñigo & Salvador, Beatriz & Vázquez, Carlos, 2017. "PDE models and numerical methods for total value adjustment in European and American options with counterparty risk," Applied Mathematics and Computation, Elsevier, vol. 308(C), pages 31-53.
    9. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    10. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    11. Shuaiqiang Liu & 'Alvaro Leitao & Anastasia Borovykh & Cornelis W. Oosterlee, 2020. "On Calibration Neural Networks for extracting implied information from American options," Papers 2001.11786, arXiv.org.
    12. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    3. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    4. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    5. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Neural Optimal Stopping Boundary," Papers 2205.04595, arXiv.org, revised May 2023.
    6. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, October.
    7. Peter W. Duck & Chao Yang & David P. Newton & Martin Widdicks, 2009. "Singular Perturbation Techniques Applied To Multiasset Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 457-486, July.
    8. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2022. "Deep Stochastic Optimization in Finance," Papers 2205.04604, arXiv.org.
    9. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2020. "Pricing and Hedging American-Style Options with Deep Learning," JRFM, MDPI, vol. 13(7), pages 1-12, July.
    10. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
    11. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    12. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2022. "Deep learning and American options via free boundary framework," Papers 2211.11803, arXiv.org, revised Dec 2022.
    13. Vladislav Kargin, 2005. "Lattice Option Pricing By Multidimensional Interpolation," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 635-647, October.
    14. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2024. "Deep Learning and American Options via Free Boundary Framework," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 979-1022, August.
    15. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    16. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    17. Andrea Gamba & Lenos Trigeorgis, 2007. "An Improved Binomial Lattice Method for Multi-Dimensional Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(5), pages 453-475.
    18. Jiefei Yang & Guanglian Li, 2024. "Gradient-enhanced sparse Hermite polynomial expansions for pricing and hedging high-dimensional American options," Papers 2405.02570, arXiv.org.
    19. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Calypso Herrera & Florian Krach & Pierre Ruyssen & Josef Teichmann, 2021. "Optimal Stopping via Randomized Neural Networks," Papers 2104.13669, arXiv.org, revised Dec 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2020:i:1:p:46-:d:469210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.