IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i2d10.1007_s10614-023-10459-3.html
   My bibliography  Save this article

Deep Learning and American Options via Free Boundary Framework

Author

Listed:
  • Chinonso Nwankwo

    (University of Calgary)

  • Nneka Umeorah

    (Cardiff University)

  • Tony Ware

    (University of Calgary)

  • Weizhong Dai

    (Louisiana Tech University)

Abstract

We propose a deep learning method for solving the American options model with a free boundary feature. To extract the free boundary known as the early exercise boundary from our proposed method, we introduce the Landau transformation. For efficient implementation of our proposed method, we further construct an implicit dual solution framework consisting of a novel auxiliary function and free boundary equations. The auxiliary function is formulated to include the feed-forward deep neural network (DNN) output and further mimic the far boundary behaviour, smooth pasting condition, and remaining boundary conditions due to the second-order space derivative and first-order time derivative. Because the early exercise boundary and its derivative are not a priori known, the boundary values mimicked by the auxiliary function are in approximate form. Concurrently, we then establish equations that approximate the early exercise boundary and its derivative directly from the DNN output based on some linear relationships at the left boundary. Furthermore, the option Greeks are obtained from the derivatives of this auxiliary function. We test our implementation with several examples and compare them with the existing numerical methods. All indicators show that our proposed deep learning method presents an efficient and alternative way of pricing options with early exercise features.

Suggested Citation

  • Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2024. "Deep Learning and American Options via Free Boundary Framework," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 979-1022, August.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10459-3
    DOI: 10.1007/s10614-023-10459-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10459-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10459-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    3. Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch, 2020. "Solving path dependent PDEs with LSTM networks and path signatures," Papers 2011.10630, arXiv.org.
    4. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    5. Chinonso Nwankwo & Weizhong Dai, 2022. "Sixth-Order Compact Differencing with Staggered Boundary Schemes and 3(2) Bogacki-Shampine Pairs for Pricing Free-Boundary Options," Papers 2207.14379, arXiv.org.
    6. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    7. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen, 2019. "Pricing and hedging American-style options with deep learning," Papers 1912.11060, arXiv.org, revised Jul 2020.
    8. Yangang Chen & Justin W. L. Wan, 2021. "Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 45-67, January.
    9. Chinonso Nwankwo & Weizhong Dai, 2021. "On the Efficiency of 5(4) RK-Embedded Pairs with High Order Compact Scheme and Robin Boundary Condition for Options Valuation," Papers 2108.10418, arXiv.org, revised Apr 2022.
    10. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, September.
    11. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    12. David S. Bunch & Herb Johnson, 2000. "The American Put Option and Its Critical Stock Price," Journal of Finance, American Finance Association, vol. 55(5), pages 2333-2356, October.
    13. Pascal Létourneau & Lars Stentoft, 2019. "Bootstrapping the Early Exercise Boundary in the Least-Squares Monte Carlo Method," JRFM, MDPI, vol. 12(4), pages 1-21, December.
    14. Justin Sirignano & Konstantinos Spiliopoulos, 2017. "DGM: A deep learning algorithm for solving partial differential equations," Papers 1708.07469, arXiv.org, revised Sep 2018.
    15. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    16. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    17. Ali Hirsa & Tugce Karatas & Amir Oskoui, 2019. "Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes," Papers 1902.05810, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinonso Nwankwo & Nneka Umeorah & Tony Ware & Weizhong Dai, 2022. "Deep learning and American options via free boundary framework," Papers 2211.11803, arXiv.org, revised Dec 2022.
    2. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    5. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    6. Song-Ping Zhu, 2006. "An exact and explicit solution for the valuation of American put options," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 229-242.
    7. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, October.
    8. In oon Kim & Bong-Gyu Jang & Kyeong Tae Kim, 2013. "A simple iterative method for the valuation of American options," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 885-895, May.
    9. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    10. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    11. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    12. Ivan Guo & Nicolas Langren'e & Jiahao Wu, 2023. "Simultaneous upper and lower bounds of American-style option prices with hedging via neural networks," Papers 2302.12439, arXiv.org, revised Nov 2024.
    13. Barone-Adesi, Giovanni, 2005. "The saga of the American put," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2909-2918, November.
    14. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
    15. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    16. Minqiang Li, 2010. "Analytical approximations for the critical stock prices of American options: a performance comparison," Review of Derivatives Research, Springer, vol. 13(1), pages 75-99, April.
    17. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    18. Zhongkai Liu & Tao Pang, 2016. "An efficient grid lattice algorithm for pricing American-style options," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 5(1), pages 36-55.
    19. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    20. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10459-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.