IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.00801.html
   My bibliography  Save this paper

Robust Estimation of Conditional Factor Models

Author

Listed:
  • Qihui Chen

Abstract

This paper develops estimation and inference methods for conditional quantile factor models. We first introduce a simple sieve estimation, and establish asymptotic properties of the estimators under large $N$. We then provide a bootstrap procedure for estimating the distributions of the estimators. We also provide two consistent estimators for the number of factors. The methods allow us not only to estimate conditional factor structures of distributions of asset returns utilizing characteristics, but also to conduct robust inference in conditional factor models, which enables us to analyze the cross section of asset returns with heavy tails. We apply the methods to analyze the cross section of individual US stock returns.

Suggested Citation

  • Qihui Chen, 2022. "Robust Estimation of Conditional Factor Models," Papers 2204.00801, arXiv.org, revised Apr 2022.
  • Handle: RePEc:arx:papers:2204.00801
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.00801
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qihui Chen & Nikolai Roussanov & Xiaoliang Wang, 2021. "Semiparametric Conditional Factor Models: Estimation and Inference," Papers 2112.07121, arXiv.org, revised Sep 2023.
    2. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    3. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    2. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
    3. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    4. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    5. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    7. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.
    8. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    9. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    10. Givord, Pauline & Quantin, Simon & Trevien, Corentin, 2018. "A long-term evaluation of the first generation of French urban enterprise zones," Journal of Urban Economics, Elsevier, vol. 105(C), pages 149-161.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Wei, Jie & Chen, Hui, 2020. "Determining the number of factors in approximate factor models by twice K-fold cross validation," Economics Letters, Elsevier, vol. 191(C).
    13. Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015. "Risks of large portfolios," Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
    14. Han Lin Shang, 2023. "Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 421-441, September.
    15. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    16. Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
    17. Yongfu Huang & Muhammad G. Quibria, 2015. "The global partnership for sustainable development," Natural Resources Forum, Blackwell Publishing, vol. 0(3-4), pages 157-174, August.
    18. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    19. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    20. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.00801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.