IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.00984.html
   My bibliography  Save this paper

A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen Portfolio on the NIFTY 50 Stocks

Author

Listed:
  • Jaydip Sen
  • Abhishek Dutta

Abstract

Portfolio optimization has been an area of research that has attracted a lot of attention from researchers and financial analysts. Designing an optimum portfolio is a complex task since it not only involves accurate forecasting of future stock returns and risks but also needs to optimize them. This paper presents a systematic approach to portfolio optimization using two approaches, the hierarchical risk parity algorithm and the Eigen portfolio on seven sectors of the Indian stock market. The portfolios are built following the two approaches to historical stock prices from Jan 1, 2016, to Dec 31, 2020. The portfolio performances are evaluated on the test data from Jan 1, 2021, to Nov 1, 2021. The backtesting results of the portfolios indicate that the performance of the HRP portfolio is superior to that of its Eigen counterpart on both training and test data for the majority of the sectors studied.

Suggested Citation

  • Jaydip Sen & Abhishek Dutta, 2022. "A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen Portfolio on the NIFTY 50 Stocks," Papers 2210.00984, arXiv.org.
  • Handle: RePEc:arx:papers:2210.00984
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.00984
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaydip Sen & Abhishek Dutta & Sidra Mehtab, 2021. "Stock Portfolio Optimization Using a Deep Learning LSTM Model," Papers 2111.04709, arXiv.org.
    2. Sidra Mehtab & Jaydip Sen, 2020. "Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models," Papers 2010.13891, arXiv.org.
    3. Marco Corazza & Giacomo di Tollo & Giovanni Fasano & Raffaele Pesenti, 2021. "A novel hybrid PSO-based metaheuristic for costly portfolio selection problems," Annals of Operations Research, Springer, vol. 304(1), pages 109-137, September.
    4. Sidra Mehtab & Jaydip Sen, 2019. "A Robust Predictive Model for Stock Price Prediction Using Deep Learning and Natural Language Processing," Papers 1912.07700, arXiv.org.
    5. Jiayu Qiu & Bin Wang & Changjun Zhou, 2020. "Forecasting stock prices with long-short term memory neural network based on attention mechanism," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    6. Jaydip Sen & Sidra Mehtab & Abhishek Dutta, 2021. "Volatility Modeling of Stocks from Selected Sectors of the Indian Economy Using GARCH," Papers 2105.13898, arXiv.org.
    7. Sidra Mehtab & Jaydip Sen & Abhishek Dutta, 2020. "Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models," Papers 2009.10819, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaydip Sen, 2022. "Designing Efficient Pair-Trading Strategies Using Cointegration for the Indian Stock Market," Papers 2211.07080, arXiv.org.
    2. Jaydip Sen & Ashwin Kumar R S & Geetha Joseph & Kaushik Muthukrishnan & Koushik Tulasi & Praveen Varukolu, 2022. "Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market," Papers 2201.05570, arXiv.org.
    3. Jaydip Sen & Subhasis Dasgupta, 2023. "Portfolio Optimization: A Comparative Study," Papers 2307.05048, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaydip Sen & Ashwin Kumar R S & Geetha Joseph & Kaushik Muthukrishnan & Koushik Tulasi & Praveen Varukolu, 2022. "Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market," Papers 2201.05570, arXiv.org.
    2. Jaydip Sen & Subhasis Dasgupta, 2023. "Portfolio Optimization: A Comparative Study," Papers 2307.05048, arXiv.org.
    3. Jaydip Sen & Saikat Mondal & Sidra Mehtab, 2021. "Analysis of Sectoral Profitability of the Indian Stock Market Using an LSTM Regression Model," Papers 2111.04976, arXiv.org.
    4. Jaydip Sen & Arpit Awad & Aaditya Raj & Gourav Ray & Pusparna Chakraborty & Sanket Das & Subhasmita Mishra, 2022. "Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market," Papers 2208.07166, arXiv.org.
    5. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Hierarchical Risk Parity and Minimum Variance Portfolio Design on NIFTY 50 Stocks," Papers 2202.02728, arXiv.org.
    6. Jaydip Sen & Abhishek Dutta, 2022. "Design and Analysis of Optimized Portfolios for Selected Sectors of the Indian Stock Market," Papers 2210.03943, arXiv.org.
    7. Jaydip Sen & Aditya Jaiswal & Anshuman Pathak & Atish Kumar Majee & Kushagra Kumar & Manas Kumar Sarkar & Soubhik Maji, 2023. "A Comparative Analysis of Portfolio Optimization Using Mean-Variance, Hierarchical Risk Parity, and Reinforcement Learning Approaches on the Indian Stock Market," Papers 2305.17523, arXiv.org.
    8. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    9. Jaydip Sen, 2022. "Designing Efficient Pair-Trading Strategies Using Cointegration for the Indian Stock Market," Papers 2211.07080, arXiv.org.
    10. Jaydip Sen & Rajdeep Sen & Abhishek Dutta, 2021. "Machine Learning in Finance-Emerging Trends and Challenges," Papers 2110.11999, arXiv.org.
    11. Jaydip Sen & Abhishek Dutta & Sidra Mehtab, 2021. "Stock Portfolio Optimization Using a Deep Learning LSTM Model," Papers 2111.04709, arXiv.org.
    12. Jaydip Sen & Saikat Mondal & Gourab Nath, 2022. "Robust Portfolio Design and Stock Price Prediction Using an Optimized LSTM Model," Papers 2204.01850, arXiv.org.
    13. Sidra Mehtab & Jaydip Sen & Subhasis Dasgupta, 2020. "Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep Learning Models," Papers 2011.08011, arXiv.org, revised Jan 2021.
    14. Jaydip Sen & Abhishek Dutta & Sidra Mehtab, 2021. "Profitability Analysis in Stock Investment Using an LSTM-Based Deep Learning Model," Papers 2104.06259, arXiv.org.
    15. Jaydip Sen & Arup Dasgupta & Partha Pratim Sengupta & Sayantani Roy Choudhury, 2023. "A Comparative Study of Portfolio Optimization Methods for the Indian Stock Market," Papers 2310.14748, arXiv.org.
    16. Jaydip Sen & Hetvi Waghela & Sneha Rakshit, 2024. "Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning," Papers 2407.01572, arXiv.org.
    17. Jaydip Sen & Arup Dasgupta & Subhasis Dasgupta & Sayantani Roychoudhury, 2023. "A Portfolio Rebalancing Approach for the Indian Stock Market," Papers 2310.09770, arXiv.org.
    18. Yiyang Zheng, 2022. "Neural Network and Order Flow, Technical Analysis: Predicting short-term direction of futures contract," Papers 2203.12457, arXiv.org.
    19. Abhiraj Sen & Jaydip Sen, 2023. "Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks," Papers 2309.13696, arXiv.org.
    20. Ananda Chatterjee & Hrisav Bhowmick & Jaydip Sen, 2021. "Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models," Papers 2111.01137, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.00984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.