IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.04842.html
   My bibliography  Save this paper

A Stock Selection Method Based on Earning Yield Forecast Using Sequence Prediction Models

Author

Listed:
  • Jessie Sun

Abstract

Long-term investors, different from short-term traders, focus on examining the underlying forces that affect the well-being of a company. They rely on fundamental analysis which attempts to measure the intrinsic value an equity. Quantitative investment researchers have identified some value factors to determine the cost of investment for a stock and compare different stocks. This paper proposes using sequence prediction models to forecast a value factor-the earning yield (EBIT/EV) of a company for stock selection. Two advanced sequence prediction models-Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) networks are studied. These two models can overcome the inherent problems of a standard Recurrent Neural Network, i.e., vanishing and exploding gradients. This paper firstly introduces the theories of the networks. And then elaborates the workflow of stock pool creation, feature selection, data structuring, model setup and model evaluation. The LSTM and GRU models demonstrate superior performance of forecast accuracy over a traditional Feedforward Neural Network model. The GRU model slightly outperformed the LSTM model.

Suggested Citation

  • Jessie Sun, 2019. "A Stock Selection Method Based on Earning Yield Forecast Using Sequence Prediction Models," Papers 1905.04842, arXiv.org.
  • Handle: RePEc:arx:papers:1905.04842
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.04842
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hedayati , Amin & Hedayati , Moein & Esfandyari, Morteza, 2016. "Stock market index prediction using artificial neural network," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 21(41), pages 89-93.
    2. B. W. Wanjawa & L. Muchemi, 2014. "ANN Model to Predict Stock Prices at Stock Exchange Markets," Papers 1502.06434, arXiv.org.
    3. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    4. Abarbanell, JS & Bushee, BJ, 1997. "Fundamental analysis, future earnings, and stock prices," Journal of Accounting Research, Wiley Blackwell, vol. 35(1), pages 1-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marhaendra Kusuma & Diana Zuhroh & Prihat Assih & Grahita Chandrarin, 2021. "The Effect of Net Income and Other Comprehensive Income on Future¡¯s Comprehensive Income With Attribution of Comprehensive Income as Moderating Variable," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(3), pages 205-219, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradley Blaylock & Bradley P. Lawson & Michael A. Mayberry, 2020. "Taxable income, future profitability, and stock returns," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 47(7-8), pages 858-881, July.
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko & Poza, Carlos, 2022. "The COVID-19 pandemic and the degree of persistence of US stock prices and bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 118-123.
    3. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    4. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    5. Mauri, Alfredo J. & Lin, Jing & Neiva De Figueiredo, João, 2013. "The influence of strategic patterns of internationalization on the accuracy and bias of earnings forecasts by financial analysts," International Business Review, Elsevier, vol. 22(4), pages 725-735.
    6. Pätäri, Eero & Karell, Ville & Luukka, Pasi & Yeomans, Julian S, 2018. "Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence," European Journal of Operational Research, Elsevier, vol. 265(2), pages 655-672.
    7. Janusz Gajda & Rafał Walasek, 2020. "Fractional differentiation and its use in machine learning," Working Papers 2020-32, Faculty of Economic Sciences, University of Warsaw.
    8. Gikas Hardouvelis & George Papanastasopoulos & Dimitrios D. Thomakos & Tao Wang, 2007. "Accruals, Net Stock Issues and Value-Glamour Anomalies: New Evidence on their Relation," Working Paper series 47_07, Rimini Centre for Economic Analysis.
    9. Xuewen Han & Neng Wang & Shangkun Che & Hongyang Yang & Kunpeng Zhang & Sean Xin Xu, 2024. "Enhancing Investment Analysis: Optimizing AI-Agent Collaboration in Financial Research," Papers 2411.04788, arXiv.org.
    10. Hirshleifer, David & Kewei Hou & Teoh, Siew Hong & Yinglei Zhang, 2004. "Do investors overvalue firms with bloated balance sheets?," Journal of Accounting and Economics, Elsevier, vol. 38(1), pages 297-331, December.
    11. Dafydd Mali & Hyoung‐joo Lim, 2021. "Do Relatively More Efficient Firms Demand Additional Audit Effort (Hours)?," Australian Accounting Review, CPA Australia, vol. 31(2), pages 108-127, June.
    12. Bartram, Söhnke M. & Grinblatt, Mark, 2018. "Agnostic fundamental analysis works," Journal of Financial Economics, Elsevier, vol. 128(1), pages 125-147.
    13. Ken Li, 2024. "Liquidity ratios and corporate failures," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 1111-1134, March.
    14. Chi Chen & Li Zhao & Wei Cao & Jiang Bian & Chunxiao Xing, 2020. "Trimming the Sail: A Second-order Learning Paradigm for Stock Prediction," Papers 2002.06878, arXiv.org.
    15. Lu Zhang, 2017. "The Investment CAPM," European Financial Management, European Financial Management Association, vol. 23(4), pages 545-603, September.
    16. Chahine, Salim & Daher, Mai & Saade, Samer, 2021. "Doing good in periods of high uncertainty: Economic policy uncertainty, corporate social responsibility, and analyst forecast error," Journal of Financial Stability, Elsevier, vol. 56(C).
    17. Photis Panayides & Neophytos Lambertides, 2011. "Fundamental Analysis and Relative Efficiency of Maritime Firms: Dry Bulk vs Tanker Firms," Chapters, in: Kevin Cullinane (ed.), International Handbook of Maritime Economics, chapter 5, Edward Elgar Publishing.
    18. Palas, Rimona & Solomon, Dov & Gafni, Dalit & Baum, Ido, 2023. "Does wedge size matter? Financial reporting quality and effective regulation of dual-class firms," Finance Research Letters, Elsevier, vol. 54(C).
    19. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Post-Print hal-04144665, HAL.
    20. Priyank Sonkiya & Vikas Bajpai & Anukriti Bansal, 2021. "Stock price prediction using BERT and GAN," Papers 2107.09055, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.04842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.