IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.03406.html
   My bibliography  Save this paper

Dependence model assessment and selection with DecoupleNets

Author

Listed:
  • Marius Hofert
  • Avinash Prasad
  • Mu Zhu

Abstract

Neural networks are suggested for learning a map from $d$-dimensional samples with any underlying dependence structure to multivariate uniformity in $d'$ dimensions. This map, termed DecoupleNet, is used for dependence model assessment and selection. If the data-generating dependence model was known, and if it was among the few analytically tractable ones, one such transformation for $d'=d$ is Rosenblatt's transform. DecoupleNets have multiple advantages. For example, they only require an available sample and are applicable to $d'

Suggested Citation

  • Marius Hofert & Avinash Prasad & Mu Zhu, 2022. "Dependence model assessment and selection with DecoupleNets," Papers 2202.03406, arXiv.org, revised Oct 2022.
  • Handle: RePEc:arx:papers:2202.03406
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.03406
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    2. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    3. Saha, Kunal, 2018. "An investigation into the dependence structure of major cryptocurrencies," EconStor Preprints 181878, ZBW - Leibniz Information Centre for Economics.
    4. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    5. Siburg, Karl Friedrich & Stoimenov, Pavel & Weiß, Gregor N.F., 2015. "Forecasting portfolio-Value-at-Risk with nonparametric lower tail dependence estimates," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 129-140.
    6. Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).
    7. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    8. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    9. Çekin, Semih Emre & Pradhan, Ashis Kumar & Tiwari, Aviral Kumar & Gupta, Rangan, 2020. "Measuring co-dependencies of economic policy uncertainty in Latin American countries using vine copulas," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 207-217.
    10. Travkin, Alexandr, 2013. "Pair copula constructions in portfolio optimization ploblem," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 32(4), pages 110-133.
    11. Fritzsch, Simon & Timphus, Maike & Weiß, Gregor, 2024. "Marginals versus copulas: Which account for more model risk in multivariate risk forecasting?," Journal of Banking & Finance, Elsevier, vol. 158(C).
    12. Mejdoub, Hanène & Ben Arab, Mounira, 2018. "Impact of dependence modeling of non-life insurance risks on capital requirement: D-Vine Copula approach," Research in International Business and Finance, Elsevier, vol. 45(C), pages 208-218.
    13. Li, Xuan & Zhang, Wei, 2020. "Long-term assessment of a floating offshore wind turbine under environmental conditions with multivariate dependence structures," Renewable Energy, Elsevier, vol. 147(P1), pages 764-775.
    14. Cyprian Omari & Peter Mwita & Anthony Waititu, 2019. "Conditional Dependence Modelling with Regular Vine Copulas," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 8(1), pages 1-5.
    15. Panagiotou Dimitrios & Stavrakoudis Athanassios, 2016. "Price Dependence between Different Beef Cuts and Quality Grades: A Copula Approach at the Retail Level for the U.S. Beef Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 14(1), pages 121-131, May.
    16. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence between coffee qualities: a copula model to evaluate asymmetric responses," MPRA Paper 75994, University Library of Munich, Germany.
    17. Sehee Kim & Yi Li & Donna Spiegelman, 2016. "A semiparametric copula method for Cox models with covariate measurement error," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(1), pages 1-16, January.
    18. Kaveh Salehzadeh Nobari, 2021. "Pair copula constructions of point-optimal sign-based tests for predictive linear and nonlinear regressions," Papers 2111.04919, arXiv.org.
    19. Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.
    20. Mikhail Semenov & Daulet Smagulov, 2017. "Portfolio Risk Assessment using Copula Models," Papers 1707.03516, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.03406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.