IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.04919.html
   My bibliography  Save this paper

Pair copula constructions of point-optimal sign-based tests for predictive linear and nonlinear regressions

Author

Listed:
  • Kaveh Salehzadeh Nobari

Abstract

We propose pair copula constructed point-optimal sign tests in the context of linear and nonlinear predictive regressions with endogenous, persistent regressors, and disturbances exhibiting serial (nonlinear) dependence. The proposed approach entails considering the entire dependence structure of the signs to capture the serial dependence, and building feasible test statistics based on pair copula constructions of the sign process. The tests are exact and valid in the presence of heavy tailed and nonstandard errors, as well as heterogeneous and persistent volatility. Furthermore, they may be inverted to build confidence regions for the parameters of the regression function. Finally, we adopt an adaptive approach based on the split-sample technique to maximize the power of the test by finding an appropriate alternative hypothesis. In a Monte Carlo study, we compare the performance of the proposed "quasi"-point-optimal sign tests based on pair copula constructions by comparing its size and power to those of certain existing tests that are intended to be robust against heteroskedasticity. The simulation results maintain the superiority of our procedures to existing popular tests.

Suggested Citation

  • Kaveh Salehzadeh Nobari, 2021. "Pair copula constructions of point-optimal sign-based tests for predictive linear and nonlinear regressions," Papers 2111.04919, arXiv.org.
  • Handle: RePEc:arx:papers:2111.04919
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.04919
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Hobæk Haff, Ingrid & Aas, Kjersti & Frigessi, Arnoldo, 2010. "On the simplified pair-copula construction -- Simply useful or too simplistic?," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1296-1310, May.
    3. Luger, Richard, 2003. "Exact non-parametric tests for a random walk with unknown drift under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 115(2), pages 259-276, August.
    4. Elise Coudin & Jean-Marie Dufour, 2009. "Finite-sample distribution-free inference in linear median regressions under heteroscedasticity and non-linear dependence of unknown form," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 19-49, January.
    5. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    6. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    7. Magdalinos, Tassos & Phillips, Peter C.B., 2009. "Limit Theory For Cointegrated Systems With Moderately Integrated And Moderately Explosive Regressors," Econometric Theory, Cambridge University Press, vol. 25(2), pages 482-526, April.
    8. Campbell, Bryan & Dufour, Jean-Marie, 1997. "Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(1), pages 151-173, February.
    9. Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
    10. Christian Genest & Jean‐François Quessy & Bruno Rémillard, 2006. "Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 337-366, June.
    11. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    12. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
    13. Oh, Dong Hwan & Patton, Andrew J., 2016. "High-dimensional copula-based distributions with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
    14. Campbell, Bryan & Dufour, Jean-Marie, 1995. "Exact Nonparametric Orthogonality and Random Walk Tests," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 1-16, February.
    15. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    16. Daniel Berg, 2009. "Copula goodness-of-fit testing: an overview and power comparison," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 675-701.
    17. Taamouti, Abderrahim, 2015. "Finite-Sample Sign-Based Inference In Linear And Nonlinear Regression Models With Applications In Finance," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 89-113, Mars-Juin.
    18. Peter C. B. Phillips, 2014. "On Confidence Intervals for Autoregressive Roots and Predictive Regression," Econometrica, Econometric Society, vol. 82(3), pages 1177-1195, May.
    19. Gregory Mankiw, N. & Shapiro, Matthew D., 1986. "Do we reject too often? : Small sample properties of tests of rational expectations models," Economics Letters, Elsevier, vol. 20(2), pages 139-145.
    20. Peter X.-K. Song & Mingyao Li & Ying Yuan, 2009. "Joint Regression Analysis of Correlated Data Using Gaussian Copulas," Biometrics, The International Biometric Society, vol. 65(1), pages 60-68, March.
    21. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Exact optimal inference in regression models under heteroskedasticity and non-normality of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2532-2553, November.
    22. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    23. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    24. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    25. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    26. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufour, Jean-Marie & Taamouti, Abderrahim, 2010. "Exact optimal inference in regression models under heteroskedasticity and non-normality of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2532-2553, November.
    2. Dufour, Jean-Marie, 2008. "Exact optimal and adaptive inference in regression models under heteroskedasticity and non-normality of unknown forms," UC3M Working papers. Economics we086027, Universidad Carlos III de Madrid. Departamento de Economía.
    3. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    4. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    5. Alex Maynard, 2006. "The forward premium anomaly: statistical artefact or economic puzzle? New evidence from robust tests," Canadian Journal of Economics, Canadian Economics Association, vol. 39(4), pages 1244-1281, November.
    6. Maynard, Alex & Ren, Dongmeng, 2019. "The finite sample power of long-horizon predictive tests in models with financial bubbles," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 418-430.
    7. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    9. Maynard, Alex & Shimotsu, Katsumi, 2009. "Covariance-Based Orthogonality Tests For Regressors With Unknown Persistence," Econometric Theory, Cambridge University Press, vol. 25(1), pages 63-116, February.
    10. Amihud, Yakov & Hurvich, Clifford M. & Wang, Yi, 2010. "Predictive regression with order-p autoregressive predictors," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 513-525, June.
    11. Schepsmeier, Ulf, 2015. "Efficient information based goodness-of-fit tests for vine copula models with fixed margins: A comprehensive review," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 34-52.
    12. Salisu, Afees A. & Ademuyiwa, Idris & Isah, Kazeem O., 2018. "Revisiting the forecasting accuracy of Phillips curve: The role of oil price," Energy Economics, Elsevier, vol. 70(C), pages 334-356.
    13. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    14. Jiang, Xiaoquan & Lee, Bong-Soo, 2007. "Stock returns, dividend yield, and book-to-market ratio," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 455-475, February.
    15. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    16. Erik Hjalmarsson, 2006. "Inference in Long-Horizon Regressions," International Finance Discussion Papers 853, Board of Governors of the Federal Reserve System (U.S.).
    17. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    18. Chiquoine, Benjamin & Hjalmarsson, Erik, 2009. "Jackknifing stock return predictions," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 793-803, December.
    19. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.04919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.