IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.13901.html
   My bibliography  Save this paper

Fast Sampling from Time-Integrated Bridges using Deep Learning

Author

Listed:
  • Leonardo Perotti
  • Lech A. Grzelak

Abstract

We propose a methodology to sample from time-integrated stochastic bridges, namely random variables defined as $\int_{t_1}^{t_2} f(Y(t))dt$ conditioned on $Y(t_1)\!=\!a$ and $Y(t_2)\!=\!b$, with $a,b\in R$. The Stochastic Collocation Monte Carlo sampler and the Seven-League scheme are applied for this purpose. Notably, the distribution of the time-integrated bridge is approximated utilizing a polynomial chaos expansion built on a suitable set of stochastic collocation points. Furthermore, artificial neural networks are employed to learn the collocation points. The result is a robust, data-driven procedure for the Monte Carlo sampling from conditional time-integrated processes, which guarantees high accuracy and generates thousands of samples in milliseconds. Applications, with a focus on finance, are presented here as well.

Suggested Citation

  • Leonardo Perotti & Lech A. Grzelak, 2021. "Fast Sampling from Time-Integrated Bridges using Deep Learning," Papers 2111.13901, arXiv.org.
  • Handle: RePEc:arx:papers:2111.13901
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.13901
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Schaug & Harish Chandra, 2019. "On unbiased simulations of stochastic bridges conditioned on extrema," Papers 1911.10972, arXiv.org, revised Nov 2019.
    2. L. A. Grzelak & J. A. S. Witteveen & M. Suárez-Taboada & C. W. Oosterlee, 2019. "The stochastic collocation Monte Carlo sampler: highly efficient sampling from ‘expensive’ distributions," Quantitative Finance, Taylor & Francis Journals, vol. 19(2), pages 339-356, February.
    3. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    4. Daniel Dufresne, 2005. "Bessel Processes and Asian Options," Springer Books, in: Michèle Breton & Hatem Ben-Ameur (ed.), Numerical Methods in Finance, chapter 0, pages 35-57, Springer.
    5. Schöbel, Rainer & Zhu, Jianwei, 1998. "Stochastic volatility with an Ornstein-Uhlenbeck process: An extension," Tübinger Diskussionsbeiträge 139, University of Tübingen, School of Business and Economics.
    6. Álvaro Leitao & Lech A. Grzelak & Cornelis W. Oosterlee, 2017. "On an efficient multiple time step Monte Carlo simulation of the SABR model," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1549-1565, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022. "The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations," Risks, MDPI, vol. 10(3), pages 1-27, February.
    2. Pingping Zeng & Ziqing Xu & Pingping Jiang & Yue Kuen Kwok, 2023. "Analytical solvability and exact simulation in models with affine stochastic volatility and Lévy jumps," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 842-890, July.
    3. Leonardo Perotti & Lech A. Grzelak, 2022. "On Pricing of Discrete Asian and Lookback Options under the Heston Model," Papers 2211.03638, arXiv.org, revised Feb 2024.
    4. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    5. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    6. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    7. Jin Sun & Eckhard Platen, 2019. "Benchmarked Risk Minimizing Hedging Strategies for Life Insurance Policies," Research Paper Series 399, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    9. T. Pellegrino & P. Sabino, 2015. "Enhancing Least Squares Monte Carlo with diffusion bridges: an application to energy facilities," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 761-772, May.
    10. Julio Guerrero & Giuseppe Orlando, 2022. "Stochastic Local Volatility models and the Wei-Norman factorization method," Papers 2201.11241, arXiv.org.
    11. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    12. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    13. Anselm Hudde & Ludger Rüschendorf, 2023. "European and Asian Greeks for Exponential Lévy Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    14. Arianna Agosto & Enrico Moretto, 2010. "Applying default probabilities in an exponential barrier structural model," Economics and Quantitative Methods qf1005, Department of Economics, University of Insubria.
    15. Gabriel Faraud & Stéphane Goutte, 2014. "Bessel Bridges Decomposition with Varying Dimension: Applications to Finance," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1375-1403, December.
    16. Paul Glasserman & Zongjian Liu, 2010. "Sensitivity Estimates from Characteristic Functions," Operations Research, INFORMS, vol. 58(6), pages 1611-1623, December.
    17. K. Giesecke & H. Kakavand & M. Mousavi, 2011. "Exact Simulation of Point Processes with Stochastic Intensities," Operations Research, INFORMS, vol. 59(5), pages 1233-1245, October.
    18. Roger Lord, 2010. "Comment on: A Note on the Discontinuity Problem in Heston's Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 373-376.
    19. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    20. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.13901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.