IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v17y2017i10p1549-1565.html
   My bibliography  Save this article

On an efficient multiple time step Monte Carlo simulation of the SABR model

Author

Listed:
  • Álvaro Leitao
  • Lech A. Grzelak
  • Cornelis W. Oosterlee

Abstract

In this paper, we will present a multiple time step Monte Carlo simulation technique for pricing options under the Stochastic Alpha Beta Rho model. The proposed method is an extension of the one time step Monte Carlo method that we proposed in an accompanying paper Leitao et al. [Appl. Math. Comput. 2017, 293, 461–479], for pricing European options in the context of the model calibration. A highly efficient method results, with many very interesting and nontrivial components, like Fourier inversion for the sum of log-normals, stochastic collocation, Gumbel copula, correlation approximation, that are not yet seen in combination within a Monte Carlo simulation. The present multiple time step Monte Carlo method is especially useful for long-term options and for exotic options.

Suggested Citation

  • Álvaro Leitao & Lech A. Grzelak & Cornelis W. Oosterlee, 2017. "On an efficient multiple time step Monte Carlo simulation of the SABR model," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1549-1565, October.
  • Handle: RePEc:taf:quantf:v:17:y:2017:i:10:p:1549-1565
    DOI: 10.1080/14697688.2017.1301676
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2017.1301676
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2017.1301676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Benhamou, 2001. "Fast Fourier Transform for discrete Asian Options," Computing in Economics and Finance 2001 6, Society for Computational Economics.
    2. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    3. Joanne E. Kennedy & Duy Pham, 2014. "On the Approximation of the SABR with Mean Reversion Model: A Probabilistic Approach," Applied Mathematical Finance, Taylor & Francis Journals, vol. 21(5), pages 451-481, November.
    4. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    5. repec:bla:jfinan:v:44:y:1989:i:1:p:211-19 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo Perotti & Lech A. Grzelak, 2021. "Fast Sampling from Time-Integrated Bridges using Deep Learning," Papers 2111.13901, arXiv.org.
    2. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    3. Jaehyuk Choi & Chenru Liu & Byoung Ki Seo, 2019. "Hyperbolic normal stochastic volatility model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 186-204, February.
    4. Julio Guerrero & Giuseppe Orlando, 2022. "Stochastic Local Volatility models and the Wei-Norman factorization method," Papers 2201.11241, arXiv.org.
    5. Leitao, Álvaro & Oosterlee, Cornelis W. & Ortiz-Gracia, Luis & Bohte, Sander M., 2018. "On the data-driven COS method," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 68-84.
    6. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2019. "Deep Learning Volatility," Papers 1901.09647, arXiv.org, revised Aug 2019.
    7. Christian Bayer & Blanka Horvath & Aitor Muguruza & Benjamin Stemper & Mehdi Tomas, 2019. "On deep calibration of (rough) stochastic volatility models," Papers 1908.08806, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.
    2. Singor, Stefan N. & Grzelak, Lech A. & van Bragt, David D.B. & Oosterlee, Cornelis W., 2013. "Pricing inflation products with stochastic volatility and stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 286-299.
    3. Teng, Ye & Zhang, Zhimin, 2023. "On a time-changed Lévy risk model with capital injections and periodic observation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 290-314.
    4. Xin-Jiang He & Sha Lin, 2022. "An Analytical Approximation Formula for Barrier Option Prices Under the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1413-1425, December.
    5. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    6. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.
    7. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    8. Damien Ackerer & Damir Filipovic & Sergio Pulido, 2017. "The Jacobi Stochastic Volatility Model," Working Papers hal-01338330, HAL.
    9. Hongshan Li & Zhongyi Huang, 2019. "Artificial boundary method for the solution of pricing European options under the Heston model," Papers 1912.00691, arXiv.org.
    10. Damien Ackerer & Damir Filipovi'c & Sergio Pulido, 2016. "The Jacobi Stochastic Volatility Model," Papers 1605.07099, arXiv.org, revised Mar 2018.
    11. Luis A. Souto Arias & Pasquale Cirillo & Cornelis W. Oosterlee, 2022. "A new self-exciting jump-diffusion process for option pricing," Papers 2205.13321, arXiv.org, revised Feb 2023.
    12. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    13. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    14. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    15. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    16. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    17. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    18. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    19. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    20. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:17:y:2017:i:10:p:1549-1565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.