IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.10972.html
   My bibliography  Save this paper

On unbiased simulations of stochastic bridges conditioned on extrema

Author

Listed:
  • Andrew Schaug
  • Harish Chandra

Abstract

Stochastic bridges are commonly used to impute missing data with a lower sampling rate to generate data with a higher sampling rate, while preserving key properties of the dynamics involved in an unbiased way. While the generation of Brownian bridges and Ornstein-Uhlenbeck bridges is well understood, unbiased generation of such stochastic bridges subject to a given extremum has been less explored in the literature. After a review of known results, we compare two algorithms for generating Brownian bridges constrained to a given extremum, one of which generalises to other diffusions. We further apply this to generate unbiased Ornstein-Uhlenbeck bridges and unconstrained processes, both constrained to a given extremum, along with more tractable numerical approximations of these algorithms. Finally, we consider the case of drift, and applications to geometric Brownian motions.

Suggested Citation

  • Andrew Schaug & Harish Chandra, 2019. "On unbiased simulations of stochastic bridges conditioned on extrema," Papers 1911.10972, arXiv.org, revised Nov 2019.
  • Handle: RePEc:arx:papers:1911.10972
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.10972
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Xiaodong & Johnson, Paul & Duck, Peter, 2021. "A novel combination of Mycielski–Markov, regime switching and jump diffusion models for solar energy," Applied Energy, Elsevier, vol. 301(C).
    2. Leonardo Perotti & Lech A. Grzelak, 2021. "Fast Sampling from Time-Integrated Bridges using Deep Learning," Papers 2111.13901, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.10972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.