IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.11594.html
   My bibliography  Save this paper

A Meta Path Based Evaluation Method for Enterprise Credit Risk

Author

Listed:
  • Marui Du
  • Yue Ma
  • Zuoquan Zhang

Abstract

Nowadays small and medium-sized enterprises have become an essential part of the national economy. With the increasing number of such enterprises, how to evaluate their credit risk becomes a hot issue. Unlike big enterprises with massive data to analyze, it is hard to find enough information of small enterprises to assess their financial status. Limited by the lack of primary data, how to inference small enterprises' credit risk from secondary data, like information of their upstream, downstream, parent, and subsidiary enterprises attracts big attention from industry and academy. Targeting on accurately evaluating the credit risk of the small and medium-sized enterprise (SME), in this paper, we exploit the representative power of Information Network on various kinds of SME entities and SME relationships to solve the problem. A novel feature named meta path feature proposed to measure the credit risk, which makes us able to evaluate the financial status of SMEs from various perspectives. Experiments show that our method is effective to identify SMEs with credit risks.

Suggested Citation

  • Marui Du & Yue Ma & Zuoquan Zhang, 2021. "A Meta Path Based Evaluation Method for Enterprise Credit Risk," Papers 2110.11594, arXiv.org, revised May 2022.
  • Handle: RePEc:arx:papers:2110.11594
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.11594
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    2. Loredana Cultrera & Xavier Brédart, 2016. "Bankruptcy prediction: the case of Belgian SMEs," Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 15(1), pages 101-119, February.
    3. Moro, Andrea & Fink, Matthias, 2013. "Loan managers’ trust and credit access for SMEs," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 927-936.
    4. Bauer, Julian & Agarwal, Vineet, 2014. "Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 432-442.
    5. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(2), pages 1477-1493, March.
    6. Aneta Ptak-Chmielewska, 2019. "Predicting Micro-Enterprise Failures Using Data Mining Techniques," JRFM, MDPI, vol. 12(1), pages 1-17, February.
    7. Sermpinis, Georgios & Tsoukas, Serafeim & Zhang, Ping, 2018. "Modelling market implied ratings using LASSO variable selection techniques," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 19-35.
    8. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    9. Tsai, Ming-Feng & Wang, Chuan-Ju, 2017. "On the risk prediction and analysis of soft information in finance reports," European Journal of Operational Research, Elsevier, vol. 257(1), pages 243-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Schalck & Meryem Yankol-Schalck, 2021. "Predicting French SME failures: new evidence from machine learning techniques," Applied Economics, Taylor & Francis Journals, vol. 53(51), pages 5948-5963, November.
    2. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    3. Ben Jabeur, Sami, 2017. "Bankruptcy prediction using Partial Least Squares Logistic Regression," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 197-202.
    4. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    5. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Multiperiod Bankruptcy Prediction Models with Interpretable Single Models," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1357-1390, September.
    6. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    7. Sohrabi, Narges & Movaghari, Hadi, 2020. "Reliable factors of Capital structure: Stability selection approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 296-310.
    8. Caraiani, Petre, 2022. "Using LASSO-family models to estimate the impact of monetary policy on corporate investments," Economics Letters, Elsevier, vol. 210(C).
    9. Lucey, Brian & Urquhart, Andrew & Zhang, Hanxiong, 2022. "UK Vice Chancellor compensation: Do they get what they deserve?," The British Accounting Review, Elsevier, vol. 54(4).
    10. ARATA Yoshiyuki, 2018. "Bankruptcy propagation on a customer-supplier network: An empirical analysis in Japan," Discussion papers 18040, Research Institute of Economy, Trade and Industry (RIETI).
    11. Wen-Kuo Chen & Dalianus Riantama & Long-Sheng Chen, 2020. "Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    12. Gintare Giriūniene & Lukas Giriūnas & Mangirdas Morkunas & Laura Brucaite, 2019. "A Comparison on Leading Methodologies for Bankruptcy Prediction: The Case of the Construction Sector in Lithuania," Economies, MDPI, vol. 7(3), pages 1-20, August.
    13. Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
    14. Georgios Sermpinis & Serafeim Tsoukas & Ping Zhang, 2019. "What influences a bank's decision to go public?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1464-1485, October.
    15. Alex Coad & Stjepan Srhoj, 2020. "Catching Gazelles with a Lasso: Big data techniques for the prediction of high-growth firms," Small Business Economics, Springer, vol. 55(3), pages 541-565, October.
    16. Caglayan, Mustafa & Pham, Tho & Talavera, Oleksandr & Xiong, Xiong, 2020. "Asset mispricing in peer-to-peer loan secondary markets," Journal of Corporate Finance, Elsevier, vol. 65(C).
    17. Hirk, Rainer & Vana, Laura & Hornik, Kurt, 2022. "A corporate credit rating model with autoregressive errors," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 224-240.
    18. Koresh Galil & Margalit Samuel & Offer Moshe Shapir & Wolf Wagner, 2023. "Bailouts and the modeling of bank distress," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 46(1), pages 7-30, February.
    19. Sigrist, Fabio & Hirnschall, Christoph, 2019. "Grabit: Gradient tree-boosted Tobit models for default prediction," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 177-192.
    20. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.11594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.