IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.01578.html
   My bibliography  Save this paper

Evacuation Route Planning for Alternative Fuel Vehicles

Author

Listed:
  • Denissa Sari Darmawi Purba
  • Eleftheria Kontou
  • Chrysafis Vogiatzis

Abstract

As the number of adopted alternative fuel vehicles increases, it is crucial for communities (especially those that are susceptible to hazards) to make evacuation plans that account for such vehicles refueling needs. During emergencies that require preemptive evacuation planning, travelers using alternative fuel vehicles are vulnerable when evacuation routes do not provide access to refueling stations on their way to shelters. In this paper, we formulate and solve a novel seamless evacuation route plan problem, by designing $k$-minimum spanning trees with hop constraints that capture the refueling needs of each $k \in K$ vehicle fuel type on their way to reach a shelter. We develop a branch-and-price algorithm based on a matheuristic column generation approach to solve the evacuation problem. We apply the proposed framework to the Sioux Falls transportation network with existing infrastructure deployment and present numerical experiments. Specifically, we discuss the evacuation travel and refueling times under scenarios of various alternative fuel vehicles driving ranges. Our findings show that the characteristics of each vehicle fuel type, like driving range and the refueling infrastructure topology, play a pivotal role in determining evacuation route plans. This means that an evacuation route could prove unique to a single vehicle fuel type, while being infeasible to the others. Finally, we observe that the driving range constraints could force evacuee vehicles to detour to meet their refueling needs before reaching safety and increase the total evacuation time by 7.32 % in one of the evaluated scenarios.

Suggested Citation

  • Denissa Sari Darmawi Purba & Eleftheria Kontou & Chrysafis Vogiatzis, 2021. "Evacuation Route Planning for Alternative Fuel Vehicles," Papers 2109.01578, arXiv.org, revised May 2022.
  • Handle: RePEc:arx:papers:2109.01578
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.01578
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Chi & Lin, Dung-Ying & Travis Waller, S., 2010. "A dynamic evacuation network optimization problem with lane reversal and crossing elimination strategies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 295-316, May.
    2. François Vanderbeck, 2000. "On Dantzig-Wolfe Decomposition in Integer Programming and ways to Perform Branching in a Branch-and-Price Algorithm," Operations Research, INFORMS, vol. 48(1), pages 111-128, February.
    3. He, Fang & Wu, Di & Yin, Yafeng & Guan, Yongpei, 2013. "Optimal deployment of public charging stations for plug-in hybrid electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 87-101.
    4. Makiko Hori & Mark Schafer & David Bowman, 2009. "Displacement Dynamics in Southern Louisiana After Hurricanes Katrina and Rita," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 28(1), pages 45-65, February.
    5. Cova, Thomas J. & Johnson, Justin P., 2003. "A network flow model for lane-based evacuation routing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(7), pages 579-604, August.
    6. He, Fang & Yin, Yafeng & Lawphongpanich, Siriphong, 2014. "Network equilibrium models with battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 306-319.
    7. Athanasios K. Ziliaskopoulos, 2000. "A Linear Programming Model for the Single Destination System Optimum Dynamic Traffic Assignment Problem," Transportation Science, INFORMS, vol. 34(1), pages 37-49, February.
    8. François Vanderbeck, 2005. "Implementing Mixed Integer Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 331-358, Springer.
    9. Xuwei Chen & John Meaker & F. Zhan, 2006. "Agent-Based Modeling and Analysis of Hurricane Evacuation Procedures for the Florida Keys," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(3), pages 321-338, July.
    10. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.
    11. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    12. Jacques Desrosiers & Marco E. Lübbecke, 2005. "A Primer in Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 1-32, Springer.
    13. Omkar Achrekar & Chrysafis Vogiatzis, 2018. "Evacuation Trees with Contraflow and Divergence Considerations," Springer Optimization and Its Applications, in: Ilias S. Kotsireas & Anna Nagurney & Panos M. Pardalos (ed.), Dynamics of Disasters, pages 1-46, Springer.
    14. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryo Matsuoka & Koichi Kobayashi & Yuh Yamashita, 2024. "Online Optimization of Pickup and Delivery Problem Considering Feasibility," Future Internet, MDPI, vol. 16(2), pages 1-15, February.
    2. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    3. Feng Yang & Zhong Wu & Xiaoyan Teng & Shaojian Qu, 2022. "Robust Counterpart Models for Fresh Agricultural Product Routing Planning Considering Carbon Emissions and Uncertainty," Sustainability, MDPI, vol. 14(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuedong Yan & Xiaobing Liu & Yulei Song, 2018. "Optimizing evacuation efficiency under emergency with consideration of social fairness based on a cell transmission model," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-21, November.
    2. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    3. Ke, Jintao & Cen, Xuekai & Yang, Hai & Chen, Xiqun & Ye, Jieping, 2019. "Modelling drivers’ working and recharging schedules in a ride-sourcing market with electric vehicles and gasoline vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 160-180.
    4. Qin, Hu & Moriakin, Anton & Xu, Gangyan & Li, Jiliu, 2024. "The generator distribution problem for base stations during emergency power outage: A branch-and-price-and-cut approach," European Journal of Operational Research, Elsevier, vol. 318(3), pages 752-767.
    5. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    6. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    7. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.
    8. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    9. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    10. Liu, Jialin & Jiang, Rui & Liu, Yang & Jia, Bin & Li, Xingang & Wang, Ting, 2024. "Managing evacuation of multiclass traffic flow: Fleet configuration, lane allocation, lane reversal, and cross elimination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    11. Faping Wang & Rui Chen & Lixin Miao & Peng Yang & Bin Ye, 2019. "Location Optimization of Electric Vehicle Mobile Charging Stations Considering Multi-Period Stochastic User Equilibrium," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    12. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    13. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    14. Xiaozheng He & Hong Zheng & Srinivas Peeta & Yongfu Li, 2018. "Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning," Networks and Spatial Economics, Springer, vol. 18(4), pages 1027-1050, December.
    15. Vedat Bayram & Hande Yaman, 2018. "Shelter Location and Evacuation Route Assignment Under Uncertainty: A Benders Decomposition Approach," Transportation Science, INFORMS, vol. 52(2), pages 416-436, March.
    16. Hediye Tuydes-Yaman & Athanasios Ziliaskopoulos, 2014. "Modeling demand management strategies for evacuations," Annals of Operations Research, Springer, vol. 217(1), pages 491-512, June.
    17. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    18. Cen, Xuekai & Lo, Hong K. & Li, Lu & Lee, Enoch, 2018. "Modeling electric vehicles adoption for urban commute trips," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 431-454.
    19. Chu, James C., 2018. "Mixed-integer programming model and branch-and-price-and-cut algorithm for urban bus network design and timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 188-216.
    20. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.01578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.