IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2108.10453.html
   My bibliography  Save this paper

Continuous Treatment Recommendation with Deep Survival Dose Response Function

Author

Listed:
  • Jie Zhu
  • Blanca Gallego

Abstract

We propose a general formulation for continuous treatment recommendation problems in settings with clinical survival data, which we call the Deep Survival Dose Response Function (DeepSDRF). That is, we consider the problem of learning the conditional average dose response (CADR) function solely from historical data in which observed factors (confounders) affect both observed treatment and time-to-event outcomes. The estimated treatment effect from DeepSDRF enables us to develop recommender algorithms with the correction for selection bias. We compared two recommender approaches based on random search and reinforcement learning and found similar performance in terms of patient outcome. We tested the DeepSDRF and the corresponding recommender on extensive simulation studies and the eICU Research Institute (eRI) database. To the best of our knowledge, this is the first time that causal models are used to address the continuous treatment effect with observational data in a medical context.

Suggested Citation

  • Jie Zhu & Blanca Gallego, 2021. "Continuous Treatment Recommendation with Deep Survival Dose Response Function," Papers 2108.10453, arXiv.org, revised Sep 2023.
  • Handle: RePEc:arx:papers:2108.10453
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2108.10453
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    2. Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," IZA Discussion Papers 3255, Institute of Labor Economics (IZA).
    3. Daniel Scharfstein & James M. Robins & Wesley Eddings & Andrea Rotnitzky, 2001. "Inference in Randomized Studies with Informative Censoring and Discrete Time-to-Event Endpoints," Biometrics, The International Biometric Society, vol. 57(2), pages 404-413, June.
    4. Antonio F. Galvao & Liang Wang, 2015. "Uniformly Semiparametric Efficient Estimation of Treatment Effects With a Continuous Treatment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1528-1542, December.
    5. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    6. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    7. Michela Bia & Alessandra Mattei, 2008. "A Stata package for the estimation of the dose–response function through adjustment for the generalized propensity score," Stata Journal, StataCorp LP, vol. 8(3), pages 354-373, September.
    8. Stitelman Ori M. & De Gruttola Victor & van der Laan Mark J., 2012. "A General Implementation of TMLE for Longitudinal Data Applied to Causal Inference in Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-39, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Hilal Atasoy & Rajiv D. Banker & Paul A. Pavlou, 2016. "On the Longitudinal Effects of IT Use on Firm-Level Employment," Information Systems Research, INFORMS, vol. 27(1), pages 6-26, March.
    3. Ida D'Attoma & Silvia Pacei, 2018. "Evaluating the Effects of Product Innovation on the Performance of European Firms by Using the Generalised Propensity Score," German Economic Review, Verein für Socialpolitik, vol. 19(1), pages 94-112, February.
    4. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    5. repec:lic:licosd:29311 is not listed on IDEAS
    6. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    7. Magrini, Emiliano & Montalbano, Pierluigi & Nenci, Silvia & Salvatici, Luca, 2014. "Agricultural trade distortions during recent international price spikes: what implications for food security?," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182726, European Association of Agricultural Economists.
    8. Juan M. Villa, 2014. "The length of exposure to antipoverty transfer programmes: what is the relevance for children's human capital formation?," Global Development Institute Working Paper Series 20614, GDI, The University of Manchester.
    9. Emiliano Magrini & Pierluigi Montalbano & Silvia Nenci & Luca Salvatici, 2017. "Agricultural (Dis)Incentives and Food Security: Is There a Link?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(4), pages 847-871.
    10. BIA Michela & FLORES Carlos A. & MATTEI Alessandra, 2011. "Nonparametric Estimators of Dose-Response Functions," LISER Working Paper Series 2011-40, Luxembourg Institute of Socio-Economic Research (LISER).
    11. Ruth T. Chepchirchir & Ibrahim Macharia & Alice W. Murage & Charles A. O. Midega & Zeyaur R. Khan, 2017. "Impact assessment of push-pull pest management on incomes, productivity and poverty among smallholder households in Eastern Uganda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1359-1372, December.
    12. Michela Bia & Alessandra Mattei, 2012. "Assessing the effect of the amount of financial aids to Piedmont firms using the generalized propensity score," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 485-516, November.
    13. Flores-Lagunes, Alfonso & Gonzalez, Arturo & Neumann, Todd C., 2007. "Estimating the Effects of Length of Exposure to a Training Program: The Case of Job Corps," IZA Discussion Papers 2846, Institute of Labor Economics (IZA).
    14. Serrano-Domingo, Guadalupe & Requena-Silvente, Francisco, 2013. "Re-examining the migration–trade link using province data: An application of the generalized propensity score," Economic Modelling, Elsevier, vol. 32(C), pages 247-261.
    15. Emiliano Magrini & Pierluigi Montalbano & Silvia Nenci & Luca Salvatici, 2014. "Agricultural Trade Policies and Food Security: Is there a Causal Relationship?," Working Papers 9/14, Sapienza University of Rome, DISS.
    16. Ferrara, Antonella Rita & Dijkstra, Lewis & McCann, Philip & Nisticó, Rosanna, 2022. "The response of regional well-being to place-based policy interventions," Regional Science and Urban Economics, Elsevier, vol. 97(C).
    17. Juan M. Villa, 2018. "The continuous treatment effect of an antipoverty program on children's educational attainment: Colombia's Familias en Accion," Review of Development Economics, Wiley Blackwell, vol. 22(3), pages 1239-1262, August.
    18. Kreif, N. & Grieve, R. & Díaz, I. & Harrison, D., 2014. "Health econometric evaluation of the effects of a continuous treatment: a machine learning approach," Health, Econometrics and Data Group (HEDG) Working Papers 14/19, HEDG, c/o Department of Economics, University of York.
    19. Zachary K. Collier & Walter L. Leite & Allison Karpyn, 2021. "Neural Networks to Estimate Generalized Propensity Scores for Continuous Treatment Doses," Evaluation Review, , vol. 45(1-2), pages 3-33, February.
    20. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    21. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.10453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.