IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v21y2012i4p485-516.html
   My bibliography  Save this article

Assessing the effect of the amount of financial aids to Piedmont firms using the generalized propensity score

Author

Listed:
  • Michela Bia
  • Alessandra Mattei

Abstract

Regional and national development policies play an important role to support local enterprises in Italy. The amount of financial aid may be a key feature for firms’ employment policies. We study the impact on employment of the amount of financial aid attributed to enterprises located in Piedmont, a region in northern Italy, analysing small-sized firms and medium- or large-sized firms separately. We apply generalized propensity score methods under the unconfoundedness assumption that adjusting for differences in a set of observed pre-treatment variables removes all biases in comparisons by different amounts of financial aid. We find that the estimated effects are increasing with amount of financial aid for both small-sized and medium- or large-sized firms, whereas the marginal effects of additional incentives are decreasing with amount of financial aid for small-sized firms, and have an inverse J-shape for medium- or large-sized firms. Copyright Springer-Verlag 2012

Suggested Citation

  • Michela Bia & Alessandra Mattei, 2012. "Assessing the effect of the amount of financial aids to Piedmont firms using the generalized propensity score," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(4), pages 485-516, November.
  • Handle: RePEc:spr:stmapp:v:21:y:2012:i:4:p:485-516
    DOI: 10.1007/s10260-012-0193-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-012-0193-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-012-0193-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raffaello Bronzini & Guido de Blasio & Guido Pellegrini & Alessandro Scognamiglio, 2008. "The effect of investment tax credit: Evidence from an atypical programme in Italy," Temi di discussione (Economic working papers) 661, Bank of Italy, Economic Research and International Relations Area.
    2. Andrea Ichino & Fabrizia Mealli & Tommaso Nannicini, 2008. "From temporary help jobs to permanent employment: what can we learn from matching estimators and their sensitivity?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(3), pages 305-327.
    3. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    4. Kluve, Jochen & Schneider, Hilmar & Uhlendorff, Arne & Zhao, Zhong, 2007. "Evaluating Continuous Training Programs Using the Generalized Propensity Score," IZA Discussion Papers 3255, Institute of Labor Economics (IZA).
    5. Oscar A. Mitnik, 2007. "Intergenerational transmission of welfare dependency: The effects of length of exposure," Working Papers 0715, University of Miami, Department of Economics.
    6. Carlos A. Flores, 2007. "Estimation of Dose-Response Functions and Optimal Doses with a Continuous Treatment," Working Papers 0707, University of Miami, Department of Economics.
    7. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
    8. Guido Pellegrini & Carla Carlucci, 2003. "Gli effetti della legge 488/92: una valutazione dell'impatto occupazionale sulle imprese agevolate," Rivista italiana degli economisti, Società editrice il Mulino, issue 2, pages 267-286.
    9. Bondonio, Daniele, 2002. "Evaluating the Employment Impact of Business Incentive Programs in EU Disadvantaged Areas. A case from Northern Italy," POLIS Working Papers 27, Institute of Public Policy and Public Choice - POLIS.
    10. Michela Bia & Alessandra Mattei, 2008. "A Stata package for the estimation of the dose–response function through adjustment for the generalized propensity score," Stata Journal, StataCorp LP, vol. 8(3), pages 354-373, September.
    11. Lu B. & Zanutto E. & Hornik R. & Rosenbaum P.R., 2001. "Matching With Doses in an Observational Study of a Media Campaign Against Drug Abuse," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1245-1253, December.
    12. Kelly D. Edmiston, 2007. "The role of small and large businesses in economic development," Economic Review, Federal Reserve Bank of Kansas City, vol. 92(Q II), pages 73-97.
    13. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    14. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    15. Valentina Adorno & Cristina Bernini & Guido Pellegrini, 2007. "The Impact of Capital Subsidies: New Estimations under Continuous Treatment," Giornale degli Economisti, GDE (Giornale degli Economisti e Annali di Economia), Bocconi University, vol. 66(1), pages 67-92, March.
    16. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    17. Guido Pellegrini, 2001. "La struttura produttiva delle piccole e medie imprese italiane: il modello dei distretti," Banca Impresa Società, Società editrice il Mulino, issue 2, pages 237-248.
    18. Jochen Kluve & Hilmar Schneider & Arne Uhlendorff & Zhong Zhao, 2012. "Evaluating continuous training programmes by using the generalized propensity score," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 587-617, April.
    19. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michela Bia & Roberto Leombruni & Pierre-Jean Messe, 2009. "Young in-Old out: a new evaluation based on Generalized Propensity Score," LABORatorio R. Revelli Working Papers Series 93, LABORatorio R. Revelli, Centre for Employment Studies.
    2. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    3. BIA Michela & FLORES Carlos A. & MATTEI Alessandra, 2011. "Nonparametric Estimators of Dose-Response Functions," LISER Working Paper Series 2011-40, Luxembourg Institute of Socio-Economic Research (LISER).
    4. Flores-Lagunes, Alfonso & Gonzalez, Arturo & Neumann, Todd C., 2007. "Estimating the Effects of Length of Exposure to a Training Program: The Case of Job Corps," IZA Discussion Papers 2846, Institute of Labor Economics (IZA).
    5. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    6. Choe, Chung & Flores-Lagunes, Alfonso & Lee, Sang-Jun, 2011. "Do Dropouts Benefit from Training Programs? Korean Evidence Employing Methods for Continuous Treatments," IZA Discussion Papers 6064, Institute of Labor Economics (IZA).
    7. Ying-Ying Lee, 2014. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Economics Series Working Papers 706, University of Oxford, Department of Economics.
    8. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    9. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    10. Emiliano Magrini & Pierluigi Montalbano & Silvia Nenci & Luca Salvatici, 2017. "Agricultural (Dis)Incentives and Food Security: Is There a Link?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(4), pages 847-871.
    11. Magrini, Emiliano & Montalbano, Pierluigi & Nenci, Silvia & Salvatici, Luca, 2014. "Agricultural Trade Policy Distortions and Food Security: Is there a Causal Relationship?," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173091, Italian Association of Agricultural and Applied Economics (AIEAA).
    12. Ruth T. Chepchirchir & Ibrahim Macharia & Alice W. Murage & Charles A. O. Midega & Zeyaur R. Khan, 2017. "Impact assessment of push-pull pest management on incomes, productivity and poverty among smallholder households in Eastern Uganda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1359-1372, December.
    13. Serrano-Domingo, Guadalupe & Requena-Silvente, Francisco, 2013. "Re-examining the migration–trade link using province data: An application of the generalized propensity score," Economic Modelling, Elsevier, vol. 32(C), pages 247-261.
    14. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    15. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Hilal Atasoy & Rajiv D. Banker & Paul A. Pavlou, 2016. "On the Longitudinal Effects of IT Use on Firm-Level Employment," Information Systems Research, INFORMS, vol. 27(1), pages 6-26, March.
    17. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Chung Choe & Alfonso Flores-Lagunes & Sang-Jun Lee, 2015. "Do dropouts with longer training exposure benefit from training programs? Korean evidence employing methods for continuous treatments," Empirical Economics, Springer, vol. 48(2), pages 849-881, March.
    19. Ida D'Attoma & Silvia Pacei, 2018. "Evaluating the Effects of Product Innovation on the Performance of European Firms by Using the Generalised Propensity Score," German Economic Review, Verein für Socialpolitik, vol. 19(1), pages 94-112, February.
    20. Michela Bia & Carlos A. Flores & Alfonso Flores-Lagunes & Alessandra Mattei, 2014. "A Stata package for the application of semiparametric estimators of dose–response functions," Stata Journal, StataCorp LP, vol. 14(3), pages 580-604, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:21:y:2012:i:4:p:485-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.