IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.11589.html
   My bibliography  Save this paper

Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London

Author

Listed:
  • Shahram Heydari
  • Garyfallos Konstantinoudis
  • Abdul Wahid Behsoodi

Abstract

The COVID-19 pandemic has been influencing travel behaviour in many urban areas around the world since the beginning of 2020. As a consequence, bike-sharing schemes have been affected partly due to the change in travel demand and behaviour as well as a shift from public transit. This study estimates the varying effect of the COVID-19 pandemic on the London bike-sharing system (Santander Cycles) over the period March-December 2020. We employed a Bayesian second-order random walk time-series model to account for temporal correlation in the data. We compared the observed number of cycle hires and hire time with their respective counterfactuals (what would have been if the pandemic had not happened) to estimate the magnitude of the change caused by the pandemic. The results indicated that following a reduction in cycle hires in March and April 2020, the demand rebounded from May 2020, remaining in the expected range of what would have been if the pandemic had not occurred. This could indicate the resiliency of Santander Cycles. With respect to hire time, an important increase occurred in April, May, and June 2020, indicating that bikes were hired for longer trips, perhaps partly due to a shift from public transit.

Suggested Citation

  • Shahram Heydari & Garyfallos Konstantinoudis & Abdul Wahid Behsoodi, 2021. "Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London," Papers 2107.11589, arXiv.org.
  • Handle: RePEc:arx:papers:2107.11589
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.11589
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Haojie & Ding, Hongliang & Ren, Gang & Xu, Chengcheng, 2018. "Effects of the London Cycle Superhighways on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 304-315.
    2. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    3. Li, Haojie & Zhang, Yingheng & Ding, Hongliang & Ren, Gang, 2019. "Effects of dockless bike-sharing systems on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 398-411.
    4. Li, Haojie & Zhang, Yingheng & Zhu, Manman & Ren, Gang, 2021. "Impacts of COVID-19 on the usage of public bicycle share in London," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 140-155.
    5. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
    6. Borkowski, Przemysław & Jażdżewska-Gutta, Magdalena & Szmelter-Jarosz, Agnieszka, 2021. "Lockdowned: Everyday mobility changes in response to COVID-19," Journal of Transport Geography, Elsevier, vol. 90(C).
    7. Yanyong Guo & Jibiao Zhou & Yao Wu & Zhibin Li, 2017. "Identifying the factors affecting bike-sharing usage and degree of satisfaction in Ningbo, China," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    8. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    9. Wang, Haoyun & Noland, Robert B., 2021. "Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City," Transport Policy, Elsevier, vol. 106(C), pages 262-270.
    10. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    11. Alexandros Nikitas & Stefanos Tsigdinos & Christos Karolemeas & Efthymia Kourmpa & Efthimios Bakogiannis, 2021. "Cycling in the Era of COVID-19: Lessons Learnt and Best Practice Policy Recommendations for a More Bike-Centric Future," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    12. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Journal of Transport Geography, Elsevier, vol. 84(C).
    13. Kim, Kyoungok, 2018. "Investigation on the effects of weather and calendar events on bike-sharing according to the trip patterns of bike rentals of stations," Journal of Transport Geography, Elsevier, vol. 66(C), pages 309-320.
    14. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt96g9c9nd, Institute of Transportation Studies, UC Berkeley.
    15. Jonathan Weinert & Chaktan Ma & Christopher Cherry, 2007. "The transition to electric bikes in China: history and key reasons for rapid growth," Transportation, Springer, vol. 34(3), pages 301-318, May.
    16. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    17. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    18. Ahmadreza Faghih-Imani & Naveen Eluru, 2020. "A finite mixture modeling approach to examine New York City bicycle sharing system (CitiBike) users’ destination preferences," Transportation, Springer, vol. 47(2), pages 529-553, April.
    19. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    20. Kuo-Ying Wang, 2014. "How Change of Public Transportation Usage Reveals Fear of the SARS Virus in a City," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    21. Vickerman, Roger, 2021. "Will Covid-19 put the public back in public transport? A UK perspective," Transport Policy, Elsevier, vol. 103(C), pages 95-102.
    22. Cervero, Robert & Denman, Steve & Jin, Ying, 2019. "Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns," Transport Policy, Elsevier, vol. 74(C), pages 153-164.
    23. Younes, Hannah & Nasri, Arefeh & Baiocchi, Giovanni & Zhang, Lei, 2019. "How transit service closures influence bikesharing demand; lessons learned from SafeTrack project in Washington, D.C. metropolitan area," Journal of Transport Geography, Elsevier, vol. 76(C), pages 83-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goh, Hyewon & Choi, Gahyun & Song, Yena, 2023. "How the COVID-19 pandemic changed travel behaviour? A case study on public bikes in Seoul," Research in Transportation Economics, Elsevier, vol. 101(C).
    2. Zhang, Ze & Guo, Yuchen & Feng, Li, 2022. "Externalities of dockless bicycle-sharing systems: Implications for green recovery of the transportation sector," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 410-419.
    3. Lucia Rotaris & Mario Intini & Alessandro Gardelli, 2022. "Impacts of the COVID-19 Pandemic on Bike-Sharing: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    4. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namkung, Ok Stella & Park, Jonghan & Ko, Joonho, 2023. "Public bike users’ annual travel distance: Findings from combined data of user survey and annual rental records," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    2. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    3. Shahram Heydari & Garyfallos Konstantinoudis & Abdul Wahid Behsoodi, 2021. "Effect of the COVID-19 pandemic on bike-sharing demand and hire time: Evidence from Santander Cycles in London," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-16, December.
    4. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    5. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).
    6. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    7. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    8. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    9. Song, Jie & Zhang, Liye & Qin, Zheng & Ramli, Muhamad Azfar, 2022. "Spatiotemporal evolving patterns of bike-share mobility networks and their associations with land-use conditions before and after the COVID-19 outbreak," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    10. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    11. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    12. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    13. Liu, Hung-Chi & Lin, Jen-Jia, 2019. "Associations of built environments with spatiotemporal patterns of public bicycle use," Journal of Transport Geography, Elsevier, vol. 74(C), pages 299-312.
    14. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    15. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    16. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    17. Dong, Xiaoyang & Zhang, Bin & Wang, Zhaohua, 2023. "Impact of land use on bike-sharing travel patterns: Evidence from large scale data analysis in China," Land Use Policy, Elsevier, vol. 133(C).
    18. Rodrigo Mora & Pablo Moran, 2020. "Public Bike Sharing Programs Under the Prism of Urban Planning Officials: The Case of Santiago de Chile," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    19. Wang, Haoyun & Noland, Robert B., 2021. "Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City," Transport Policy, Elsevier, vol. 106(C), pages 262-270.
    20. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.11589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.