IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2107.04636.html
   My bibliography  Save this paper

End-to-End Risk Budgeting Portfolio Optimization with Neural Networks

Author

Listed:
  • Ayse Sinem Uysal
  • Xiaoyue Li
  • John M. Mulvey

Abstract

Portfolio optimization has been a central problem in finance, often approached with two steps: calibrating the parameters and then solving an optimization problem. Yet, the two-step procedure sometimes encounter the "error maximization" problem where inaccuracy in parameter estimation translates to unwise allocation decisions. In this paper, we combine the prediction and optimization tasks in a single feed-forward neural network and implement an end-to-end approach, where we learn the portfolio allocation directly from the input features. Two end-to-end portfolio constructions are included: a model-free network and a model-based network. The model-free approach is seen as a black-box, whereas in the model-based approach, we learn the optimal risk contribution on the assets and solve the allocation with an implicit optimization layer embedded in the neural network. The model-based end-to-end framework provides robust performance in the out-of-sample (2017-2021) tests when maximizing Sharpe ratio is used as the training objective function, achieving a Sharpe ratio of 1.16 when nominal risk parity yields 0.79 and equal-weight fix-mix yields 0.83. Noticing that risk-based portfolios can be sensitive to the underlying asset universe, we develop an asset selection mechanism embedded in the neural network with stochastic gates, in order to prevent the portfolio being hurt by the low-volatility assets with low returns. The gated end-to-end with filter outperforms the nominal risk-parity benchmarks with naive filtering mechanism, boosting the Sharpe ratio of the out-of-sample period (2017-2021) to 1.24 in the market data.

Suggested Citation

  • Ayse Sinem Uysal & Xiaoyue Li & John M. Mulvey, 2021. "End-to-End Risk Budgeting Portfolio Optimization with Neural Networks," Papers 2107.04636, arXiv.org.
  • Handle: RePEc:arx:papers:2107.04636
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2107.04636
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/4688 is not listed on IDEAS
    2. David Ardia & Guido Bolliger & Kris Boudt & Jean-Philippe Gagnon-Fleury, 2017. "The impact of covariance misspecification in risk-based portfolios," Annals of Operations Research, Springer, vol. 254(1), pages 1-16, July.
    3. Xi Bai & Katya Scheinberg & Reha Tutuncu, 2016. "Least-squares approach to risk parity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 357-376, March.
    4. Jean-Charles Richard & Thierry Roncalli, 2019. "Constrained Risk Budgeting Portfolios: Theory, Algorithms, Applications & Puzzles," Papers 1902.05710, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Butler & Roy Kwon, 2021. "Efficient differentiable quadratic programming layers: an ADMM approach," Papers 2112.07464, arXiv.org.
    2. Simon, Frederik & Weibels, Sebastian & Zimmermann, Tom, 2023. "Deep parametric portfolio policies," CFR Working Papers 23-01, University of Cologne, Centre for Financial Research (CFR).
    3. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    4. Zikai Wei & Bo Dai & Dahua Lin, 2023. "E2EAI: End-to-End Deep Learning Framework for Active Investing," Papers 2305.16364, arXiv.org.
    5. Chao Zhang & Zihao Zhang & Mihai Cucuringu & Stefan Zohren, 2021. "A Universal End-to-End Approach to Portfolio Optimization via Deep Learning," Papers 2111.09170, arXiv.org.
    6. Andrew Butler & Roy H. Kwon, 2023. "Efficient differentiable quadratic programming layers: an ADMM approach," Computational Optimization and Applications, Springer, vol. 84(2), pages 449-476, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Sinem Uysal & Xiaoyue Li & John M. Mulvey, 2024. "End-to-end risk budgeting portfolio optimization with neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 397-426, August.
    2. Giorgio Costa & Roy Kwon, 2020. "A robust framework for risk parity portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 447-466, September.
    3. Li, Xiaoyue & Uysal, A. Sinem & Mulvey, John M., 2022. "Multi-period portfolio optimization using model predictive control with mean-variance and risk parity frameworks," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1158-1176.
    4. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    5. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    6. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    7. da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023. "Risk budgeting portfolios from simulations," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
    8. Miquel Noguer i Alonso & Sonam Srivastava, 2020. "Deep Reinforcement Learning for Asset Allocation in US Equities," Papers 2010.04404, arXiv.org.
    9. Anis, Hassan T. & Kwon, Roy H., 2022. "Cardinality-constrained risk parity portfolios," European Journal of Operational Research, Elsevier, vol. 302(1), pages 392-402.
    10. Erdinc Akyildirim & Matteo Gambara & Josef Teichmann & Syang Zhou, 2023. "Randomized Signature Methods in Optimal Portfolio Selection," Papers 2312.16448, arXiv.org.
    11. Debjani Palit & Victor R. Prybutok, 2024. "A Study of Hierarchical Risk Parity in Portfolio Construction," Journal of Economic Analysis, Anser Press, vol. 3(3), pages 106-125, September.
    12. Zhang, Xi & Li, Jian, 2018. "Credit and market risks measurement in carbon financing for Chinese banks," Energy Economics, Elsevier, vol. 76(C), pages 549-557.
    13. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    14. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    15. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2020. "An optimization–diversification approach to portfolio selection," Journal of Global Optimization, Springer, vol. 76(2), pages 245-265, February.
    16. Silvana M. Pesenti & Sebastian Jaimungal & Yuri F. Saporito & Rodrigo S. Targino, 2023. "Risk Budgeting Allocation for Dynamic Risk Measures," Papers 2305.11319, arXiv.org, revised Oct 2024.
    17. Olessia Caillé & Daria Onori, 2019. "Conditional Risk-Based Portfolio," Finance, Presses universitaires de Grenoble, vol. 40(2), pages 77-117.
    18. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
    19. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    20. M. Bayat & F. Hooshmand & S. A. MirHassani, 2024. "Scenario-based stochastic model and efficient cross-entropy algorithm for the risk-budgeting problem," Annals of Operations Research, Springer, vol. 341(2), pages 731-755, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.04636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.