IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-023-05539-4.html
   My bibliography  Save this article

End-to-end risk budgeting portfolio optimization with neural networks

Author

Listed:
  • A. Sinem Uysal

    (Princeton University)

  • Xiaoyue Li

    (Princeton University)

  • John M. Mulvey

    (Princeton University
    Princeton University)

Abstract

Traditional stochastic optimization in financial operations research applications consist of a two-step process: (1) calibrate parameters of the assumed stochastic processes by minimizing a loss function, and (2) optimize a decision vector by reference to the investor’s reward/risk measures. Yet this approach can encounter the error maximization problem. We combine the steps in a single unified feedforward network, called end-to-end. Two variants are examined: a model-free neural network, and a model-based network in which a risk budgeting model is embedded as an implicit layer in a deep neural network. We performed computational experiments with major ETF indices and found that the model-based approach leads to robust performance out-of-sample (2017–2021) when maximizing the Sharpe ratio as the training objective, achieving Sharpe ratio of 1.16 versus 0.83 for a pure risk budgeting model. Simulation studies show statistically significant difference between model-based and model-free approaches as well. We extend the end-to-end algorithm by filtering assets with low volatility and low returns, boosting the out-of-sample Sharpe ratio to 1.24. The end-to-end approach can be readily applied to a wide variety of financial and other optimization problems.

Suggested Citation

  • A. Sinem Uysal & Xiaoyue Li & John M. Mulvey, 2024. "End-to-end risk budgeting portfolio optimization with neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 397-426, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05539-4
    DOI: 10.1007/s10479-023-05539-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05539-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05539-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05539-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.