IDEAS home Printed from https://ideas.repec.org/p/umc/wpaper/2104.html
   My bibliography  Save this paper

k-Class Instrumental Variables Quantile Regression

Author

Abstract

With standard instrumental variables regression, k-class estimators have the potential to reduce bias, which is larger with weak instruments. With instrumental variables quantile regression, weak instrument-robust estimation is even more important because there is less guidance for assessing instrument strength. Motivated by this, we introduce an analogous k-class of estimators for instrumental variables quantile regression. We show the first-order asymptotic distribution under strong instruments is equivalent for all conventional choices of k. We evaluate finite-sample median bias in simulations. Computation is fast, and the "LIML" k reliably reduces median bias compared to the k=1 benchmark across a variety of data-generating processes, especially with greater degrees of overidentification. We also revisit some empirical estimates of consumption Euler equations. All code is provided online.

Suggested Citation

  • David M. Kaplan & Xin Liu, 2021. "k-Class Instrumental Variables Quantile Regression," Working Papers 2104, Department of Economics, University of Missouri.
  • Handle: RePEc:umc:wpaper:2104
    as

    Download full text from publisher

    File URL: https://drive.google.com/file/d/1-XfPT7tkvkSljM9tl3Y5MrMtjbbh5BF4/view?usp=sharing
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Motohiro Yogo, 2004. "Estimating the Elasticity of Intertemporal Substitution When Instruments Are Weak," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 797-810, August.
    2. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    3. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    4. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    5. Javier Alejo & Antonio F Galvao & Gabriel Montes-Rojas, 2023. "A first-stage representation for instrumental variables quantile regression," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 350-377.
    6. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    7. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    8. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    9. Angrist, J D & Imbens, G W & Krueger, A B, 1999. "Jackknife Instrumental Variables Estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 57-67, Jan.-Feb..
    10. Chernozhukov, Victor & Hansen, Christian, 2006. "Instrumental quantile regression inference for structural and treatment effect models," Journal of Econometrics, Elsevier, vol. 132(2), pages 491-525, June.
    11. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    12. Luciano de Castro & Antonio F. Galvao, 2019. "Dynamic Quantile Models of Rational Behavior," Econometrica, Econometric Society, vol. 87(6), pages 1893-1939, November.
    13. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    14. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    15. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Alejo & Antonio F. Galvao & Gabriel Montes-Rojas, 2020. "A first-stage test for instrumental variables quantile regression," Asociación Argentina de Economía Política: Working Papers 4304, Asociación Argentina de Economía Política.
    2. Namhyun Kim & Winfried Pohlmeier, 2016. "A Note on the Regularized Approach to Biased 2SLS Estimation with Weak Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(6), pages 915-924, December.
    3. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    4. de Castro, Luciano & Galvao, Antonio F. & Montes-Rojas, Gabriel, 2020. "Quantile selection in non-linear GMM quantile models," Economics Letters, Elsevier, vol. 195(C).
    5. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    6. Russell Davidson & James G. MacKinnon, 2006. "The case against JIVE," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 827-833, September.
    7. Keisuke Hirano & Jack R. Porter, 2015. "Location Properties of Point Estimators in Linear Instrumental Variables and Related Models," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 720-733, December.
    8. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    9. Nam-Hyun Kim & Winfried Pohlmeier, 2015. "A Regularization Approach to Biased Two-Stage Least Squares Estimation," Working Paper series 15-22, Rimini Centre for Economic Analysis.
    10. Javier Alejo & Antonio F Galvao & Gabriel Montes-Rojas, 2023. "A first-stage representation for instrumental variables quantile regression," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 350-377.
    11. Hiroaki Kaido & Kaspar Wüthrich, 2021. "Decentralization estimators for instrumental variable quantile regression models," Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
    12. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    13. Emma M. Iglesias & Garry D. A. Phillips, 2012. "Almost Unbiased Estimation in Simultaneous Equation Models With Strong and/or Weak Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(4), pages 505-520, June.
    14. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    15. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    16. Xin Liu, 2024. "Averaging Estimation for Instrumental Variables Quantile Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 1290-1312, October.
    17. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    18. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    19. He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
    20. Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org, revised Dec 2024.

    More about this item

    Keywords

    bias; weak instruments;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umc:wpaper:2104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chao Gu (email available below). General contact details of provider: https://edirc.repec.org/data/edumous.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.