IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.02137.html
   My bibliography  Save this paper

The indifference value of the weak information

Author

Listed:
  • Fabrice Baudoin
  • Oleksii Mostovyi

Abstract

We propose indifference pricing to estimate the value of the weak information. Our framework allows for tractability, quantifying the amount of additional information, and permits the description of the smallness and the stability with respect to small perturbations of the weak information. We provide sharp conditions for the stability with counterexamples. The results rely on a theorem of independent interest on the stability of the optimal investment problem with respect to small changes in the physical probability measure. We also investigate contingent claims that are indifference price invariant with respect to changes in weak information. We show that, in incomplete models, the class of information-invariant claims includes the replicable claims, and it can be strictly bigger. In particular, in complete models, all contingent claims are information invariant. We augment the results with examples and counterexamples.

Suggested Citation

  • Fabrice Baudoin & Oleksii Mostovyi, 2024. "The indifference value of the weak information," Papers 2408.02137, arXiv.org.
  • Handle: RePEc:arx:papers:2408.02137
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.02137
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cetin, Umut & Danilova, Albina, 2021. "On pricing rules and optimal strategies in general Kyle-Back models," LSE Research Online Documents on Economics 113003, London School of Economics and Political Science, LSE Library.
    2. Albina Danilova & Michael Monoyios & Andrew Ng, 2009. "Optimal investment with inside information and parameter uncertainty," Papers 0911.3117, arXiv.org, revised Feb 2010.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    5. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1761-1784.
    6. Jin Hyuk Choi & Kookyoung Han, 2023. "Delegation of information acquisition, information asymmetry, and outside option," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 833-860, September.
    7. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2018. "No-arbitrage under a class of honest times," Finance and Stochastics, Springer, vol. 22(1), pages 127-159, January.
    8. Stefan Ankirchner & Steffen Dereich & Peter Imkeller, 2005. "The Shannon information of filtrations and the additional logarithmic utility of insiders," Papers math/0503013, arXiv.org, revised May 2006.
    9. Luciano Campi & Umut Çetin, 2007. "Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling," Finance and Stochastics, Springer, vol. 11(4), pages 591-602, October.
    10. Detemple, Jerome & Rindisbacher, Marcel & Robertson, Scott, 2022. "Dynamic noisy rational expectations equilibrium with insider information: Welfare and regulation," Journal of Economic Dynamics and Control, Elsevier, vol. 141(C).
    11. Philip A. Ernst & L. C. G. Rogers, 2020. "The Value of Insight," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1193-1209, November.
    12. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    13. Marcel Nutz, 2009. "The Opportunity Process for Optimal Consumption and Investment with Power Utility," Papers 0912.1879, arXiv.org, revised Jun 2010.
    14. Fabrice Baudoin & Laurent Nguyen-Ngoc, 2004. "The financial value of a weak information on a financial market," Finance and Stochastics, Springer, vol. 8(3), pages 415-435, August.
    15. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    16. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    17. Kardaras, Constantinos, 2010. "The continuous behavior of the numéraire portfolio under small changes in information structure, probabilistic views and investment constraints," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 331-347, March.
    18. Umut c{C}etin & Hao Xing, 2012. "Point process bridges and weak convergence of insider trading models," Papers 1205.4358, arXiv.org, revised Jan 2013.
    19. repec:dau:papers:123456789/4436 is not listed on IDEAS
    20. Jan Kallsen, 2000. "Optimal portfolios for exponential Lévy processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 357-374, August.
    21. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2020. "The value of informational arbitrage," Finance and Stochastics, Springer, vol. 24(2), pages 277-307, April.
    22. Sebastian Jaimungal & Xiaofei Shi, 2024. "The Price of Information," Papers 2402.11864, arXiv.org, revised Mar 2024.
    23. Cetin, Umut & Xing, Hao, 2013. "Point process bridges and weak convergence of insider trading models," LSE Research Online Documents on Economics 48745, London School of Economics and Political Science, LSE Library.
    24. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    25. Amendinger, Jürgen & Imkeller, Peter & Schweizer, Martin, 1998. "Additional logarithmic utility of an insider," SFB 373 Discussion Papers 1998,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    26. Jerome Detemple & Marcel Rindisbacher & Scott Robertson, 2020. "Dynamic Noisy Rational Expectations Equilibrium With Insider Information," Econometrica, Econometric Society, vol. 88(6), pages 2697-2737, November.
    27. Back, Kerry, 1992. "Insider Trading in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 387-409.
    28. Oleksii Mostovyi, 2015. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Finance and Stochastics, Springer, vol. 19(1), pages 135-159, January.
    29. Umut c{C}etin & Albina Danilova, 2014. "Markovian Nash equilibrium in financial markets with asymmetric information and related forward-backward systems," Papers 1407.2420, arXiv.org, revised Sep 2016.
    30. Umut c{C}etin & Albina Danilova, 2018. "On pricing rules and optimal strategies in general Kyle-Back models," Papers 1812.07529, arXiv.org, revised Aug 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luke M. Bennett & Wei Hu, 2023. "Filtration enlargement‐based time series forecast in view of insider trading," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 112-140, February.
    2. Reda Chhaibi & Ibrahim Ekren & Eunjung Noh & Lu Vy, 2022. "A unified approach to informed trading via Monge-Kantorovich duality," Papers 2210.17384, arXiv.org.
    3. Umut c{C}et{i}n, 2018. "Mathematics of Market Microstructure under Asymmetric Information," Papers 1809.03885, arXiv.org.
    4. Albina Danilova & Michael Monoyios & Andrew Ng, 2009. "Optimal investment with inside information and parameter uncertainty," Papers 0911.3117, arXiv.org, revised Feb 2010.
    5. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    6. Tahir Choulli & Sina Yansori, 2022. "Log-optimal and numéraire portfolios for market models stopped at a random time," Finance and Stochastics, Springer, vol. 26(3), pages 535-585, July.
    7. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal stopping of Gauss-Markov bridges," Papers 2211.05835, arXiv.org, revised Jul 2024.
    8. Mengütürk, Levent Ali, 2018. "Gaussian random bridges and a geometric model for information equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 465-483.
    9. Jin Hyuk Choi & Heeyoung Kwon & Kasper Larsen, 2022. "Trading constraints in continuous-time Kyle models," Papers 2206.08117, arXiv.org.
    10. Cheng Li & Hao Xing, 2013. "Asymptotic Glosten Milgrom equilibrium," Papers 1310.4994, arXiv.org, revised Jan 2015.
    11. José Manuel Corcuera & Giulia Di Nunno, 2018. "Kyle–Back’S Model With A Random Horizon," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-41, March.
    12. Li, Cheng & Xing, Hao, 2015. "Asymptotic Glosten-Milgrom equilibrium," LSE Research Online Documents on Economics 60579, London School of Economics and Political Science, LSE Library.
    13. Robert Jarrow, 2018. "An Equilibrium Capital Asset Pricing Model in Markets with Price Jumps and Price Bubbles," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-33, June.
    14. Constantinos Kardaras & Johannes Ruf, 2020. "Filtration shrinkage, the structure of deflators, and failure of market completeness," Finance and Stochastics, Springer, vol. 24(4), pages 871-901, October.
    15. Huy N. Chau & Andrea Cosso & Claudio Fontana, 2018. "The value of informational arbitrage," Papers 1804.00442, arXiv.org.
    16. Bernardo D'Auria & Jos'e Antonio Salmer'on, 2019. "Insider information and its relation with the arbitrage condition and the utility maximization problem," Papers 1909.03430, arXiv.org, revised Dec 2019.
    17. H'el`ene Halconruy, 2021. "The insider problem in the trinomial model: a discrete-time jump process approach," Papers 2106.15208, arXiv.org, revised Sep 2023.
    18. D'Auria, Bernardo & Salmerón Garrido, José Antonio, 2019. "Insider information and its relation with the arbitrage condition and the utility maximization problem," DES - Working Papers. Statistics and Econometrics. WS 28805, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Ngoc Huy Chau & Wolfgang Runggaldier & Peter Tankov, 2016. "Arbitrage and utility maximization in market models with an insider," Papers 1608.02068, arXiv.org, revised Sep 2016.
    20. Ferdoos Alharbi & Tahir Choulli, 2022. "Log-optimal portfolio after a random time: Existence, description and sensitivity analysis," Papers 2204.03798, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.02137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.