IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.08275.html
   My bibliography  Save this paper

Fat tails arise endogenously in asset prices from supply/demand, with or without jump processes

Author

Listed:
  • Gunduz Caginalp

Abstract

We show that the quotient of Levy processes of jump-diffusion type has a fat-tailed distribution. An application is to price theory in economics. We show that fat tails arise endogenously from modeling of price change based on an excess demand analysis resulting in a quotient of arbitrarily correlated demand and supply whether or not jump discontinuities are present. The assumption is that supply and demand are described by drift terms, Brownian (i.e., Gaussian) and compound Poisson jump processes. If $P^{-1}dP/dt$ (the relative price change in an interval $dt$) is given by a suitable function of relative excess demand, $\left( \mathcal{D}% -\mathcal{S}\right) /\mathcal{S}$ (where $\mathcal{D}$ and $\mathcal{S}$ are demand and supply), then the distribution has tail behavior $F\left( x\right) \sim x^{-\zeta}$ for a power $\zeta$ that depends on the function $G$ in $P^{-1}dP/dt=G\left( \mathcal{D}/\mathcal{S}\right) $. For $G\left( x\right) \sim\left\vert x\right\vert ^{1/q}$ one has $\zeta=q.$ The empirical data for assets typically yields a value, $\zeta\tilde{=}3,$ or $\ \zeta \in\left[ 3,5\right] $ for some markets. The discrepancy between the empirical result and theory never arises if one models price dynamics using basic economics methodology, i.e., generalized Walrasian adjustment, rather than the usual starting point for classical finance which assumes a normal distribution of price changes. The function $G$ is deterministic, and can be calibrated with a smaller data set. The results establish a simple link between the decay exponent of the density function and the price adjustment function, a feature that can improve methodology for risk assessment. The mathematical results can be applied to other problems involving the relative difference or quotient of Levy processes of jump-diffusion type.

Suggested Citation

  • Gunduz Caginalp, 2020. "Fat tails arise endogenously in asset prices from supply/demand, with or without jump processes," Papers 2011.08275, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:2011.08275
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.08275
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    2. Xavier Gabaix, 2016. "Power Laws in Economics: An Introduction," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 185-206, Winter.
    3. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    4. Gjerstad, Steven & Dickhaut, John, 1998. "Price Formation in Double Auctions," Games and Economic Behavior, Elsevier, vol. 22(1), pages 1-29, January.
    5. Charles R. Plott & Kirill Pogorelskiy, 2017. "Call Market Experiments: Efficiency and Price Discovery through Multiple Calls and Emergent Newton Adjustments," American Economic Journal: Microeconomics, American Economic Association, vol. 9(4), pages 1-41, November.
    6. Hirshleifer,Jack & Glazer,Amihai & Hirshleifer,David, 2005. "Price Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521523424, September.
    7. Steven Gjerstad, 2013. "Price dynamics in an exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(2), pages 461-500, March.
    8. Daníelsson, Jón & Jorgensen, Bjørn N. & Samorodnitsky, Gennady & Sarma, Mandira & de Vries, Casper G., 2013. "Fat tails, VaR and subadditivity," Journal of Econometrics, Elsevier, vol. 172(2), pages 283-291.
    9. Kirchler, Michael & Huber, Jurgen, 2007. "Fat tails and volatility clustering in experimental asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1844-1874, June.
    10. Jeitschko, Thomas D., 1999. "Equilibrium price paths in sequential auctions with stochastic supply," Economics Letters, Elsevier, vol. 64(1), pages 67-72, July.
    11. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871, September.
    12. Gjerstad, Steven, 2007. "The competitive market paradox," Journal of Economic Dynamics and Control, Elsevier, vol. 31(5), pages 1753-1780, May.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Carroll, Christopher D., 2006. "The method of endogenous gridpoints for solving dynamic stochastic optimization problems," Economics Letters, Elsevier, vol. 91(3), pages 312-320, June.
    15. Caginalp, Carey & Caginalp, Gunduz, 2018. "The quotient of normal random variables and application to asset price fat tails," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 457-471.
    16. Yuancheng Si & Saralees Nadarajah & Xiaodong Song, 2020. "On the distribution of quotient of random variables conditioned to the positive quadrant," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(10), pages 2514-2528, May.
    17. Mark DeSantis & David Swigon, 2018. "Slow-fast analysis of a multi-group asset flow model with implications for the dynamics of wealth," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-25, November.
    18. Caginalp, Carey & Caginalp, Gunduz, 2019. "Price equations with symmetric supply/demand; implications for fat tails," Economics Letters, Elsevier, vol. 176(C), pages 79-82.
    19. Evans, George W. & Honkapohja, S., 1998. "Stochastic gradient learning in the cobweb model," Economics Letters, Elsevier, vol. 61(3), pages 333-337, December.
    20. Eloísa Díaz-Francés & Francisco Rubio, 2013. "On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables," Statistical Papers, Springer, vol. 54(2), pages 309-323, May.
    21. Marsaglia, George, 2006. "Ratios of Normal Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i04).
    22. Ritirupa Samanta & Blake LeBaron, 2005. "Extreme Value Theory and Fat Tails in Equity Markets," Computing in Economics and Finance 2005 140, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carey Caginalp & Gunduz Caginalp, 2019. "Derivation of non-classical stochastic price dynamics equations," Papers 1908.01103, arXiv.org, revised Aug 2020.
    2. Caginalp, Carey & Caginalp, Gunduz, 2019. "Price equations with symmetric supply/demand; implications for fat tails," Economics Letters, Elsevier, vol. 176(C), pages 79-82.
    3. Caginalp, Carey & Caginalp, Gunduz, 2020. "Derivation of non-classical stochastic price dynamics equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Caginalp, Carey & Caginalp, Gunduz, 2018. "The quotient of normal random variables and application to asset price fat tails," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 457-471.
    5. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    6. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    8. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    9. He, Xue-Zhong & Li, Youwei, 2015. "Testing of a market fraction model and power-law behaviour in the DAX 30," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 1-17.
    10. Jack Sarkissian, 2020. "Quantum coupled-wave theory of price formation in financial markets: price measurement, dynamics and ergodicity," Papers 2002.04212, arXiv.org.
    11. Carey Caginalp & Gunduz Caginalp, 2018. "Asset Price Volatility and Price Extrema," Papers 1802.04774, arXiv.org, revised Jul 2018.
    12. Sarkissian, Jack, 2020. "Quantum coupled-wave theory of price formation in financial markets: Price measurement, dynamics and ergodicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    13. Te Bao & Elizaveta Nekrasova & Tibor Neugebauer & Yohanes E. Riyanto, 2022. "Algorithmic trading in experimental markets with human traders: A literature survey," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 23, pages 302-322, Edward Elgar Publishing.
    14. Caginalp, Carey & Caginalp, Gunduz & Swigon, David, 2021. "Stochastic asset flow equations: Interdependence of trend and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    15. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    16. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    17. Yi-Fang Liu & Wei Zhang & Chao Xu & Jørgen Vitting Andersen & Hai-Chuan Xu, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01011701, HAL.
    18. Nuzzo, Simone & Morone, Andrea, 2017. "Asset markets in the lab: A literature review," Journal of Behavioral and Experimental Finance, Elsevier, vol. 13(C), pages 42-50.
    19. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    20. Liu, Yi-Fang & Zhang, Wei & Xu, Chao & Vitting Andersen, Jørgen & Xu, Hai-Chuan, 2014. "Impact of information cost and switching of trading strategies in an artificial stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 204-215.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.08275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.