IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1904.00267.html
   My bibliography  Save this paper

Price equations with symmetric supply/demand; implications for fat tails

Author

Listed:
  • Carey Caginalp
  • Gunduz Caginalp

Abstract

Implementing a set of microeconomic criteria, we develop price dynamics equations using a function of demand/supply with key symmetry properties. The function of demand/supply can be linear or nonlinear. The type of function determines the nature of the tail of the distribution based on the randomness in the supply and demand. For example, if supply and demand are normally distributed, and the function is assumed to be linear, then the density of relative price change has behavior $x^{-2}$ for large $x$ (i.e., large deviations). The exponent approaches $-1$ if the function of supply and demand involves a large exponent. The falloff is exponential, i.e., $e^{-x}$, if the function of supply and demand is logarithmic.

Suggested Citation

  • Carey Caginalp & Gunduz Caginalp, 2019. "Price equations with symmetric supply/demand; implications for fat tails," Papers 1904.00267, arXiv.org.
  • Handle: RePEc:arx:papers:1904.00267
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1904.00267
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    2. Charles R. Plott & Kirill Pogorelskiy, 2017. "Call Market Experiments: Efficiency and Price Discovery through Multiple Calls and Emergent Newton Adjustments," American Economic Journal: Microeconomics, American Economic Association, vol. 9(4), pages 1-41, November.
    3. Hirshleifer,Jack & Glazer,Amihai & Hirshleifer,David, 2005. "Price Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521523424, September.
    4. Daníelsson, Jón & Jorgensen, Bjørn N. & Samorodnitsky, Gennady & Sarma, Mandira & de Vries, Casper G., 2013. "Fat tails, VaR and subadditivity," Journal of Econometrics, Elsevier, vol. 172(2), pages 283-291.
    5. Kirchler, Michael & Huber, Jurgen, 2007. "Fat tails and volatility clustering in experimental asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1844-1874, June.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Caginalp, Carey & Caginalp, Gunduz, 2018. "The quotient of normal random variables and application to asset price fat tails," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 457-471.
    8. Eloísa Díaz-Francés & Francisco Rubio, 2013. "On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables," Statistical Papers, Springer, vol. 54(2), pages 309-323, May.
    9. Schneeweiss, Ch., 1987. "On a formalisation of the process of quantitative model building," European Journal of Operational Research, Elsevier, vol. 29(1), pages 24-41, April.
    10. Marsaglia, George, 2006. "Ratios of Normal Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i04).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caginalp, Carey & Caginalp, Gunduz & Swigon, David, 2021. "Stochastic asset flow equations: Interdependence of trend and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. Carey Caginalp & Gunduz Caginalp, 2019. "Derivation of non-classical stochastic price dynamics equations," Papers 1908.01103, arXiv.org, revised Aug 2020.
    3. Sarkissian, Jack, 2020. "Quantum coupled-wave theory of price formation in financial markets: Price measurement, dynamics and ergodicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Jack Sarkissian, 2020. "Quantum coupled-wave theory of price formation in financial markets: price measurement, dynamics and ergodicity," Papers 2002.04212, arXiv.org.
    5. Gunduz Caginalp, 2020. "Fat tails arise endogenously in asset prices from supply/demand, with or without jump processes," Papers 2011.08275, arXiv.org, revised Mar 2021.
    6. Caginalp, Carey & Caginalp, Gunduz, 2020. "Derivation of non-classical stochastic price dynamics equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunduz Caginalp, 2020. "Fat tails arise endogenously in asset prices from supply/demand, with or without jump processes," Papers 2011.08275, arXiv.org, revised Mar 2021.
    2. Caginalp, Carey & Caginalp, Gunduz, 2018. "The quotient of normal random variables and application to asset price fat tails," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 457-471.
    3. Carey Caginalp & Gunduz Caginalp, 2019. "Derivation of non-classical stochastic price dynamics equations," Papers 1908.01103, arXiv.org, revised Aug 2020.
    4. Caginalp, Carey & Caginalp, Gunduz, 2020. "Derivation of non-classical stochastic price dynamics equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Carey Caginalp & Gunduz Caginalp, 2018. "Asset Price Volatility and Price Extrema," Papers 1802.04774, arXiv.org, revised Jul 2018.
    6. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    7. Jack Sarkissian, 2020. "Quantum coupled-wave theory of price formation in financial markets: price measurement, dynamics and ergodicity," Papers 2002.04212, arXiv.org.
    8. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    9. Caginalp, Carey & Caginalp, Gunduz, 2019. "Stochastic asset price dynamics and volatility using a symmetric supply and demand price equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 807-824.
    10. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    11. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    12. Sarkissian, Jack, 2020. "Quantum coupled-wave theory of price formation in financial markets: Price measurement, dynamics and ergodicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    13. Yam Wing Siu, 2018. "Volatility Forecast by Volatility Index and Its Use as a Risk Management Tool Under a Value-at-Risk Approach," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-48, June.
    14. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    15. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    16. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    17. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    18. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    19. William R. Morgan, 2023. "Finance Must Be Defended: Cybernetics, Neoliberalism and Environmental, Social, and Governance (ESG)," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    20. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.

    More about this item

    JEL classification:

    • G2 - Financial Economics - - Financial Institutions and Services
    • G4 - Financial Economics - - Behavioral Finance
    • D0 - Microeconomics - - General
    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D9 - Microeconomics - - Micro-Based Behavioral Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1904.00267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.