IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v54y2013i2p309-323.html
   My bibliography  Save this article

On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables

Author

Listed:
  • Eloísa Díaz-Francés
  • Francisco Rubio

Abstract

The distribution of the ratio of two independent normal random variables X and Y is heavy tailed and has no moments. The shape of its density can be unimodal, bimodal, symmetric, asymmetric, and/or even similar to a normal distribution close to its mode. To our knowledge, conditions for a reasonable normal approximation to the distribution of Z = X/Y have been presented in scientific literature only through simulations and empirical results. A proof of the existence of a proposed normal approximation to the distribution of Z, in an interval I centered at β = E(X) /E(Y), is given here for the case where both X and Y are independent, have positive means, and their coefficients of variation fulfill some conditions. In addition, a graphical informative way of assessing the closeness of the distribution of a particular ratio X/Y to the proposed normal approximation is suggested by means of a receiver operating characteristic (ROC) curve. Copyright Springer-Verlag 2013

Suggested Citation

  • Eloísa Díaz-Francés & Francisco Rubio, 2013. "On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables," Statistical Papers, Springer, vol. 54(2), pages 309-323, May.
  • Handle: RePEc:spr:stpapr:v:54:y:2013:i:2:p:309-323
    DOI: 10.1007/s00362-012-0429-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-012-0429-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-012-0429-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack Hayya & Donald Armstrong & Nicolas Gressis, 1975. "A Note on the Ratio of Two Normally Distributed Variables," Management Science, INFORMS, vol. 21(11), pages 1338-1341, July.
    2. Marsaglia, George, 2006. "Ratios of Normal Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i04).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carey Caginalp & Gunduz Caginalp, 2019. "Derivation of non-classical stochastic price dynamics equations," Papers 1908.01103, arXiv.org, revised Aug 2020.
    2. Caginalp, Carey & Caginalp, Gunduz, 2019. "Price equations with symmetric supply/demand; implications for fat tails," Economics Letters, Elsevier, vol. 176(C), pages 79-82.
    3. Caginalp, Carey & Caginalp, Gunduz, 2020. "Derivation of non-classical stochastic price dynamics equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    4. Caginalp, Carey & Caginalp, Gunduz, 2019. "Stochastic asset price dynamics and volatility using a symmetric supply and demand price equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 807-824.
    5. Gunduz Caginalp, 2020. "Fat tails arise endogenously in asset prices from supply/demand, with or without jump processes," Papers 2011.08275, arXiv.org, revised Mar 2021.
    6. Carey Caginalp & Gunduz Caginalp, 2018. "Asset Price Volatility and Price Extrema," Papers 1802.04774, arXiv.org, revised Jul 2018.
    7. Thomas Vasileiou & Leopold Summerer, 2020. "A biomimetic approach to shielding from ionizing radiation: The case of melanized fungi," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-16, April.
    8. Caginalp, Carey & Caginalp, Gunduz, 2018. "The quotient of normal random variables and application to asset price fat tails," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 457-471.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melanie Lefevre, 2011. "Willingness-to-pay for Local Milk-based Dairy Product in Senegal," CREPP Working Papers 1108, Centre de Recherche en Economie Publique et de la Population (CREPP) (Research Center on Public and Population Economics) HEC-Management School, University of Liège.
    2. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    3. Willem van Jaarsveld & Alan Scheller-Wolf, 2015. "Optimization of Industrial-Scale Assemble-to-Order Systems," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 544-560, August.
    4. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    5. Carson, Richard T. & Czajkowski, Mikołaj, 2019. "A new baseline model for estimating willingness to pay from discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 57-61.
    6. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
    7. Kourtis, Apostolos, 2014. "On the distribution and estimation of trading costs," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 104-117.
    8. Hee Mok Park & Puneet Manchanda, 2015. "When Harry Bet with Sally: An Empirical Analysis of Multiple Peer Effects in Casino Gambling Behavior," Marketing Science, INFORMS, vol. 34(2), pages 179-194, March.
    9. Caginalp, Carey & Caginalp, Gunduz, 2018. "The quotient of normal random variables and application to asset price fat tails," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 457-471.
    10. Stokes, Barrie, 2012. "mathStatica 2.5," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(s01).
    11. Carlotta Galeone & Angiola Pollastri, 2012. "Confidence intervals for the ratio of two means using the distribution of the quotient of two normals," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(3), pages 451-472, December.
    12. Burlacu, Radu & Fontaine, Patrice & Jimenez-Garcès, Sonia & Seasholes, Mark S., 2012. "Risk and the cross section of stock returns," Journal of Financial Economics, Elsevier, vol. 105(3), pages 511-522.
    13. Caginalp, Carey & Caginalp, Gunduz, 2019. "Price equations with symmetric supply/demand; implications for fat tails," Economics Letters, Elsevier, vol. 176(C), pages 79-82.
    14. Clark, Adam Thomas & Neuhauser, Claudia, 2018. "Harnessing uncertainty to approximate mechanistic models of interspecific interactions," Theoretical Population Biology, Elsevier, vol. 123(C), pages 35-44.
    15. Bagos Pantelis G, 2008. "A Unification of Multivariate Methods for Meta-Analysis of Genetic Association Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-35, October.
    16. Hsin-Neng Hsieh & Hung-Yi Lu, 2020. "The generalized inference on the ratio of mean differences for fraction retention noninferiority hypothesis," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-12, June.
    17. Alvarez, Eduardo J. & Ribaric, Adrijan P., 2018. "An improved-accuracy method for fatigue load analysis of wind turbine gearbox based on SCADA," Renewable Energy, Elsevier, vol. 115(C), pages 391-399.
    18. Yanqing Wang & Suojin Wang & Raymond J. Carroll, 2015. "The direct integral method for confidence intervals for the ratio of two location parameters," Biometrics, The International Biometric Society, vol. 71(3), pages 704-713, September.
    19. Peng Wang & Siqi Xu & Yi‐Xin Wang & Baolin Wu & Wing Kam Fung & Guimin Gao & Zhijiang Liang & Nianjun Liu, 2021. "Penalized Fieller's confidence interval for the ratio of bivariate normal means," Biometrics, The International Biometric Society, vol. 77(4), pages 1355-1368, December.
    20. Erhard Reschenhofer, 2017. "Using Ratios of Successive Returns for the Estimation of Serial Correlation in Return Series," Noble International Journal of Economics and Financial Research, Noble Academic Publsiher, vol. 2(9), pages 125-130, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:54:y:2013:i:2:p:309-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.