IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.07319.html
   My bibliography  Save this paper

Application of deep quantum neural networks to finance

Author

Listed:
  • Takayuki Sakuma

Abstract

The recent development of quantum computing gives us an opportunity to explore its potential applications to many fields, with the field of finance being no exception. In this paper, we apply the deep quantum neural network proposed by Beer et al. (2020) and discuss such potential in the context of simple experiments such as learning implied volatilities and option prices. Furthermore, Greeks such as delta and gamma, which are important measures in risk management, can be computed analytically with the neural network, and our numerical experiments show that the deep quantum neural network is a promising technique for solving such numerical problems arising in finance efficiently.

Suggested Citation

  • Takayuki Sakuma, 2020. "Application of deep quantum neural networks to finance," Papers 2011.07319, arXiv.org, revised May 2022.
  • Handle: RePEc:arx:papers:2011.07319
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.07319
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Filipe Fontanela & Antoine Jacquier & Mugad Oumgari, 2019. "A Quantum algorithm for linear PDEs arising in Finance," Papers 1912.02753, arXiv.org, revised Feb 2021.
    2. Kerstin Beer & Dmytro Bondarenko & Terry Farrelly & Tobias J. Osborne & Robert Salzmann & Daniel Scheiermann & Ramona Wolf, 2020. "Training deep quantum neural networks," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    3. Brian Huge & Antoine Savine, 2020. "Differential Machine Learning," Papers 2005.02347, arXiv.org, revised Sep 2020.
    4. Johannes Ruf & Weiguan Wang, 2020. "Hedging with Linear Regressions and Neural Networks," Papers 2004.08891, arXiv.org, revised Jun 2021.
    5. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver - A neural network based counterparty credit risk management framework," Working Papers 07/2020, University of Verona, Department of Economics.
    6. Jarrod R. McClean & Sergio Boixo & Vadim N. Smelyanskiy & Ryan Babbush & Hartmut Neven, 2018. "Barren plateaus in quantum neural network training landscapes," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lokman Abbas-Turki & St'ephane Cr'epey & Bouazza Saadeddine, 2022. "Pathwise CVA Regressions With Oversimulated Defaults," Papers 2211.17005, arXiv.org.
    2. Lokman A. Abbas‐Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA regressions with oversimulated defaults," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 274-307, April.
    3. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. He, Zhimin & Deng, Maijie & Zheng, Shenggen & Li, Lvzhou & Situ, Haozhen, 2023. "GSQAS: Graph Self-supervised Quantum Architecture Search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    5. Wei-Ming Li & Shi-Ju Ran, 2022. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity," Mathematics, MDPI, vol. 10(6), pages 1-15, March.
    6. Lokman A Abbas-Turki & Stéphane Crépey & Bouazza Saadeddine, 2023. "Pathwise CVA Regressions With Oversimulated Defaults," Post-Print hal-03910149, HAL.
    7. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    9. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    10. Su Fong Chien & Heng Siong Lim & Michail Alexandros Kourtis & Qiang Ni & Alessio Zappone & Charilaos C. Zarakovitis, 2021. "Quantum-Driven Energy-Efficiency Optimization for Next-Generation Communications Systems," Energies, MDPI, vol. 14(14), pages 1-15, July.
    11. Zhang, Yanbing & Song, Tingting & Wu, Zhihao, 2022. "An improved algorithm for computing hitting probabilities of quantum walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    12. A. Max Reppen & H. Mete Soner & Valentin Tissot-Daguette, 2023. "Deep stochastic optimization in finance," Digital Finance, Springer, vol. 5(1), pages 91-111, March.
    13. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    14. Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Lotfi Boudabsa & Damir Filipović, 2022. "Machine learning with kernels for portfolio valuation and risk management," Finance and Stochastics, Springer, vol. 26(2), pages 131-172, April.
    16. Iris Cong & Nishad Maskara & Minh C. Tran & Hannes Pichler & Giulia Semeghini & Susanne F. Yelin & Soonwon Choi & Mikhail D. Lukin, 2024. "Enhancing detection of topological order by local error correction," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Lorenc Kapllani & Long Teng, 2024. "A forward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2408.05620, arXiv.org.
    18. Fangjun Hu & Saeed A. Khan & Nicholas T. Bronn & Gerasimos Angelatos & Graham E. Rowlands & Guilhem J. Ribeill & Hakan E. Türeci, 2024. "Overcoming the coherence time barrier in quantum machine learning on temporal data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Enrico Fontana & Dylan Herman & Shouvanik Chakrabarti & Niraj Kumar & Romina Yalovetzky & Jamie Heredge & Shree Hari Sureshbabu & Marco Pistoia, 2024. "Characterizing barren plateaus in quantum ansätze with the adjoint representation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.07319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.