IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45882-z.html
   My bibliography  Save this article

Understanding quantum machine learning also requires rethinking generalization

Author

Listed:
  • Elies Gil-Fuster

    (Freie Universität Berlin
    Fraunhofer Heinrich Hertz Institute)

  • Jens Eisert

    (Freie Universität Berlin
    Fraunhofer Heinrich Hertz Institute
    Helmholtz-Zentrum Berlin für Materialien und Energie)

  • Carlos Bravo-Prieto

    (Freie Universität Berlin)

Abstract

Quantum machine learning models have shown successful generalization performance even when trained with few data. In this work, through systematic randomization experiments, we show that traditional approaches to understanding generalization fail to explain the behavior of such quantum models. Our experiments reveal that state-of-the-art quantum neural networks accurately fit random states and random labeling of training data. This ability to memorize random data defies current notions of small generalization error, problematizing approaches that build on complexity measures such as the VC dimension, the Rademacher complexity, and all their uniform relatives. We complement our empirical results with a theoretical construction showing that quantum neural networks can fit arbitrary labels to quantum states, hinting at their memorization ability. Our results do not preclude the possibility of good generalization with few training data but rather rule out any possible guarantees based only on the properties of the model family. These findings expose a fundamental challenge in the conventional understanding of generalization in quantum machine learning and highlight the need for a paradigm shift in the study of quantum models for machine learning tasks.

Suggested Citation

  • Elies Gil-Fuster & Jens Eisert & Carlos Bravo-Prieto, 2024. "Understanding quantum machine learning also requires rethinking generalization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45882-z
    DOI: 10.1038/s41467-024-45882-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45882-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45882-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    2. Matthias C. Caro & Hsin-Yuan Huang & Nicholas Ezzell & Joe Gibbs & Andrew T. Sornborger & Lukasz Cincio & Patrick J. Coles & Zoë Holmes, 2023. "Out-of-distribution generalization for learning quantum dynamics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
    4. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. M. Cerezo & Akira Sone & Tyler Volkoff & Lukasz Cincio & Patrick J. Coles, 2021. "Cost function dependent barren plateaus in shallow parametrized quantum circuits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Abhinav Kandala & Antonio Mezzacapo & Kristan Temme & Maika Takita & Markus Brink & Jerry M. Chow & Jay M. Gambetta, 2017. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets," Nature, Nature, vol. 549(7671), pages 242-246, September.
    7. Jarrod R. McClean & Sergio Boixo & Vadim N. Smelyanskiy & Ryan Babbush & Hartmut Neven, 2018. "Barren plateaus in quantum neural network training landscapes," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    8. Matthias C. Caro & Hsin-Yuan Huang & M. Cerezo & Kunal Sharma & Andrew Sornborger & Lukasz Cincio & Patrick J. Coles, 2022. "Generalization in quantum machine learning from few training data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alen Senanian & Sridhar Prabhu & Vladimir Kremenetski & Saswata Roy & Yingkang Cao & Jeremy Kline & Tatsuhiro Onodera & Logan G. Wright & Xiaodi Wu & Valla Fatemi & Peter L. McMahon, 2024. "Microwave signal processing using an analog quantum reservoir computer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Matthias C. Caro & Hsin-Yuan Huang & M. Cerezo & Kunal Sharma & Andrew Sornborger & Lukasz Cincio & Patrick J. Coles, 2022. "Generalization in quantum machine learning from few training data," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. He, Zhimin & Deng, Maijie & Zheng, Shenggen & Li, Lvzhou & Situ, Haozhen, 2023. "GSQAS: Graph Self-supervised Quantum Architecture Search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Sofiene Jerbi & Lukas J. Fiderer & Hendrik Poulsen Nautrup & Jonas M. Kübler & Hans J. Briegel & Vedran Dunjko, 2023. "Quantum machine learning beyond kernel methods," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Manuel S. Rudolph & Jacob Miller & Danial Motlagh & Jing Chen & Atithi Acharya & Alejandro Perdomo-Ortiz, 2023. "Synergistic pretraining of parametrized quantum circuits via tensor networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Matthias C. Caro & Hsin-Yuan Huang & Nicholas Ezzell & Joe Gibbs & Andrew T. Sornborger & Lukasz Cincio & Patrick J. Coles & Zoë Holmes, 2023. "Out-of-distribution generalization for learning quantum dynamics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Samson Wang & Enrico Fontana & M. Cerezo & Kunal Sharma & Akira Sone & Lukasz Cincio & Patrick J. Coles, 2021. "Noise-induced barren plateaus in variational quantum algorithms," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Michael Ragone & Bojko N. Bakalov & Frédéric Sauvage & Alexander F. Kemper & Carlos Ortiz Marrero & Martín Larocca & M. Cerezo, 2024. "A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Eric R. Anschuetz & Bobak T. Kiani, 2022. "Quantum variational algorithms are swamped with traps," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Enrico Fontana & Dylan Herman & Shouvanik Chakrabarti & Niraj Kumar & Romina Yalovetzky & Jamie Heredge & Shree Hari Sureshbabu & Marco Pistoia, 2024. "Characterizing barren plateaus in quantum ansätze with the adjoint representation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Sitan Chen & Jordan Cotler & Hsin-Yuan Huang & Jerry Li, 2023. "The complexity of NISQ," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    14. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    15. Nikolaos Schetakis & Davit Aghamalyan & Michael Boguslavsky & Agnieszka Rees & Marc Rakotomalala & Paul Robert Griffin, 2024. "Quantum Machine Learning for Credit Scoring," Mathematics, MDPI, vol. 12(9), pages 1-12, May.
    16. Jin Ming Koh & Tommy Tai & Ching Hua Lee, 2024. "Realization of higher-order topological lattices on a quantum computer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Fangjun Hu & Saeed A. Khan & Nicholas T. Bronn & Gerasimos Angelatos & Graham E. Rowlands & Guilhem J. Ribeill & Hakan E. Türeci, 2024. "Overcoming the coherence time barrier in quantum machine learning on temporal data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Junyu Liu & Minzhao Liu & Jin-Peng Liu & Ziyu Ye & Yunfei Wang & Yuri Alexeev & Jens Eisert & Liang Jiang, 2024. "Towards provably efficient quantum algorithms for large-scale machine-learning models," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    19. Mario E Rivero-Angeles, 2021. "Quantum-based wireless sensor networks: A review and open questions," International Journal of Distributed Sensor Networks, , vol. 17(10), pages 15501477211, October.
    20. Wang, Shaoxuan & Shen, Yingtong & Liu, Xinjian & Zhang, Haoying & Wang, Yukun, 2024. "Variational quantum entanglement classification discrimination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45882-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.